期刊文献+

传输子网选择:度数有界最大支撑子图逼近

Transport Sub-network Selection:Approaching with Bounded Degree Maximum Spanning Sub-graphs
下载PDF
导出
摘要 研究了源于无线网状网络的度数有界最大支撑子图问题:给定连通图G=(V,E)和正整数d≥2,求G的一个最大支撑子图H,满足对V中每个顶点v,v在H中的度数dH(v)不超过d。这里,支撑子图指图G的一个连通而且包括G中所有顶点的子图。就输入图的边是否带权,分别设计了多项式时间近似算法。当输入图为无权图时,证明了近似算法的近似比为2;当输入图为赋权图时,证明了算法输出一个最大度数不超过d+1、权重不低于最优解权重1/(d+2)的支撑子图。算法输出的度数有界支撑子图可以用作无线网状网络的传输子网。 The bounded degree maximum spanning sub-graph problem arising from wireless mesh networks was studied. Given a connected graph G=( V, E) and a positive integer d≥2,the problem aims to find a maximum spanning sub-graph H of G with the constraint; for each vertex v∈V, the degree of v in H, dH(v)≤d. Here, a spanning sub-graph of G is a connected sub-graph in G which contains all the vertices of G. Polynomial time approximation algorithms were proposed for edge un-weighted case and edge weighted case respectively. When input graphs arc edge un-weighted, a 2-approximation algorithm is designed. When input graphs are edge weighted, the designed algorithm always outputs a spanning sub-graph whose maximum degree is no more than d+1 and weight is at least OPT(G)/(d+2),where OPT(G) is the weight of optimal solutions. The bounded degree spanning sub-graph output by the algorithm can be used as a transport sulrnetwork in wireless mesh networks.
出处 《计算机科学》 CSCD 北大核心 2010年第3期42-45,共4页 Computer Science
基金 国家重点基础研究发展计划973(No.2009CB320505)资助
关键词 度数有界最大支撑子图 近似算法 无线网状网络 传输子网选择 Bounded degree maximum spanning sub-graph, Approximation algorithm, Wireless mesh networks, Transport sub-network selection
  • 相关文献

参考文献9

  • 1Kodialam M, Nandagopal T. Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem[C]//MobiCom. 2003 : 42-54.
  • 2Alicherry M, Bhatia R, Li L E. Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks[C]//MobiCom. 2005 : 58-72.
  • 3Wang Weizhao, Wang Yu, Li Xiang-yang, et al. Efficient interference-aware TDMA link scheduling for static wireless networks[C]//MobiCom. 2006 : 262-273.
  • 4Gao Jie, Guibas L J, Hershberger J, et al. Geometric spanners for routing in mobile networks[J]. IEEE Journal on Selected Areas in Communications,2005,23(1) : 174-185.
  • 5Cormen T, Leiserson C, Rivest R. Introduction to algorithms [M]. The MIT Press,2002.
  • 6Geomans M X. Minimum bounded degree spanning trees[C]// FOCS. 2006 : 273-282.
  • 7Singh M, Lau L C. Approximating minimum bounded degree spanning trees to within one of optimal[C]//STOC. 2007:661-670.
  • 8Gabow H N. An efficient reduction technique for degree-constrained subgraph and bidireeted network flow problems[C] // STOC. 1983:448-456.
  • 9Furer M, Raghavachari B. Approximating the minimum degree spanning tree to within one from the optimal degree[C]//SODA. 1992 :317-324.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部