期刊文献+

基于群能量恒定的粒子群优化算法 被引量:4

Particle swarm optimization based on swarm energy conservation
原文传递
导出
摘要 针对标准粒子群优化(PSO)算法在寻优过程中容易出现早熟的情况,提出一种群能量恒定的粒子群优化(SEC-PSO)算法.算法根据粒子内能进行动态分群,对较优群体采取引入最差粒子的速度更新策略,对较差群体采取带有惩罚机制的速度更新策略,由其分担由于较优群体速度降低而产生的整群能量损失,从而有效地避免了PSO算法的早熟.典型优化问题的仿真结果表明,该算法具有较强的全局搜索能力和较快的收敛速度,优化性能得到显著的提高. To the problem of premature convergence frequently appeared in standard particle swarm optimization(PSO) algorithm,an improved algorithm,swarm energy conservation particle swarm optimization (SEC-PSO),is proposed. The population is partitioned into two sub-swarms according to the energy of the particles. The good particles update their velocity according to the strategy with the worst particle. The bad particles update their velocity according to the strategy with penalty mechanism,and bear the swarm energy loss which is generated by speed reduction of the good population. Thus,the problem of premature convergence of the PSO algorithm is prevented. Simulations results for several typical test functions show that SEC-PSO possesses more powerful global search capabilities,better convergence rate and better performance of optimization.
出处 《控制与决策》 EI CSCD 北大核心 2010年第2期269-272,277,共5页 Control and Decision
基金 国家自然科学基金项目(20476007 20676013)
关键词 粒子群优化算法 群体智能 能量恒定 Particle swarm optimization algorithm Swarm intelligence Energy conservation
  • 相关文献

参考文献6

  • 1Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C], Proc of the 6th Int Syrup on Micro Machine and Human Science. Piseataway: IEEE Service Center, 1995: 39-43.
  • 2Brits R, Engelbrecht A P, Bergh F. Locating multiple optima using particle swarm optimization[J]. Applied Mathematics and Computation, 2007, 189 (2) : 1859- 1883.
  • 3Hideyuki Shinzawa, Jiang J H, Makio Iwahashi, et al. Self-modeling curve resolution (SMCR) by particle swarm optimization (PSO)[J]. Analytica Chimiea Acta, 2007, 595(1): 275- 281.
  • 4Jiang Y, Hu T S, Huang C C, et al. An improved particle swarm optimization algorithm [J]. Applied Mathematics and Computation, 2007, 193(1): 231-239.
  • 5刘靖明,韩丽川,侯立文.一种新的聚类算法——粒子群聚类算法[J].计算机工程与应用,2005,41(20):183-185. 被引量:25
  • 6高鹰,谢胜利,许若宁,李朝晖.基于聚类的多子群粒子群优化算法[J].计算机应用研究,2006,23(4):40-41. 被引量:11

二级参考文献12

  • 1Jain A K,Murty M N,Flynn P J.Data clustering:A survey[J].ACM Computer Survey, 1999; 31: 264~323
  • 2Jain A K, Dubes R C.Algorithms for clustering data. Englewood Cliffs[M].NJ: prentice Hall, 1988
  • 3MacQueen J.Some methods for classification and analysis of multivariate observations [ C ].In: proceedings of the 5th Berkeley Symposium on mathematics Statistic Problem, 1967; 1: 281~297
  • 4Kennedy J,Eberhart R.Particle Swarm Optimization[C].IEEE Int'l Conf.on Neural Networks,Perth,Australia,IEEE Service Center Piscataway NJ,1995.1942-1948.
  • 5Eberhart R,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proc.of the 6th International Symposium on Micro Machine and Human Science,Nagoya,Japan:IEEE Service Center Piscataway NJ,1995.39-43.
  • 6Shi Y,Eberhart R.A Modified Particle Swarm Optimizer[C].IEEE World Congress on Computational Intelligence,Anchorage,USA:IEEE Press,1998.69-73.
  • 7Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[C].Proc.of the Congress on Evolutionary Computation,Seoul Korea:IEEE Press,2001.101-106.
  • 8Lovbjerg M,Rasmussen T K,Krink T.Hybrid Particle Swarm Optimization with Breeding and Subpopulations[C].Proc.of the 3rd Genetic and Evolutionary Computation Conference,San Francisco,USA:Morga Kaufmann Publishers,2001.469-476.
  • 9Natsuki Higasshi,Hitoshi Iba.Particle Swarm Optimization with Gaussian Mutation[C].Proc.of the Congress on Evolutionary Computation,Canbella,Australia:IEEE Press,2003.72-79.
  • 10Van den Bergh F,Engelbrecht A P.Effects of Swarm Size Cooperative Particle Swarm Optimizers[C].Proc.of the 3rd Genetic and Evo-lutionary Computation Conference,San Francisco,USA:Morga Kaufmann Publishers,2001.460-465.

共引文献34

同被引文献49

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部