期刊文献+

一种基于主动学习的SVM增量训练算法 被引量:3

Incremental training algorithm of SVM based on active learning
原文传递
导出
摘要 针对SVM训练学习过程中难以获得大量带有类标注样本的问题,提出一种基于距离比值不确定性抽样的主动SVM增量训练算法(DRB-ASVM),并将其应用于SVM增量训练.实验结果表明,在保证不影响分类精度的情况下,应用主动学习策略的SVM选择的标记样本数量大大低于随机选择的标记样本数量,从而降低了标记的工作量或代价,并且提高了训练速度. To the problem that large-scale labeled samples are difficult to be acquired in the course of SVM training,the active learning strategy is used in the SVM training and an incremental training algorithm of active SVM based on the uncertainty based sampling of distance ratio is proposed in the paper. The experimental results show that the active SVM learning strategy can considerably reduce the labeled samples and costs compared to the passive learning method. And at the same time,it can ensure the accurate classification performance kept as the passive SVM and also expedite the SVM training.
出处 《控制与决策》 EI CSCD 北大核心 2010年第2期282-286,共5页 Control and Decision
基金 国家自然科学基金项目(60975026) 陕西省自然科学基金项目(2007F19)
关键词 支持向量机 增量训练 主动学习 被动学习 监督学习 Support vector machines Incremental training Active learning Passive learning Supervised learning
  • 相关文献

参考文献13

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer Press, 1995.
  • 2龙军,殷建平,祝恩,蔡志平.选取最大可能预测错误样例的主动学习算法[J].计算机研究与发展,2008,45(3):472-478. 被引量:16
  • 3龙军,殷建平,祝恩,赵文涛.主动学习中一种基于委员会的误分类采样算法[J].计算机工程与科学,2008,30(4):69-72. 被引量:4
  • 4Cohn D A, Ghahramani Z, Jordan M I. Active learning with statistical models[J]. J of Artificial Intelligence Research, 1996, 4: 129-145.
  • 5Roy N, McCallum A K. Toward optimal active learning through sampling estimation of error reduction[C]. Proc of 18th Int Conf on Machine Learning. San Francisco: Morgan Kaufmann, 2001: 441-448.
  • 6Lewis D D, Gale W. A sequential algorithm for training text classifiers [C]. Proc of 17th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. Dublin: Springer-Verlag, 1994: 3-12.
  • 7Seung H S, Opper M, Sompolinsky H. Query by committee[C]. Proc of 15th Annual ACM Workshop on Computational Learning Theory. Pittsburgh: Morgan Kaufmann, 1992: 287-294.
  • 8Freund Y, Seung H S, Samir E, et al. Selective sampling using the query by committee algorithm[J]. Machine Learning, 1997, 28(2/3): 133-168.
  • 9张翔,肖小玲,徐光祐.基于最大熵估计的支持向量机概率建模[J].控制与决策,2006,21(7):767-770. 被引量:12
  • 10徐海龙,王晓丹,史朝辉,华继学,权文.一种基于距离比值的支持向量机增量训练算法[J].空军工程大学学报(自然科学版),2008,9(4):29-33. 被引量:8

二级参考文献60

共引文献55

同被引文献39

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部