期刊文献+

一种基于小生境技术的群智能粒子滤波算法 被引量:6

Swarm intelligence particle filtering based on niching technique
原文传递
导出
摘要 针对基本粒子滤波存在严重的退化问题和重采样技术导致粒子枯竭的问题,提出一种新型粒子滤波算法——基于小生境技术的群智能优化粒子滤波算法.通过多模寻优增强粒子的多样性和寻优能力,使得采样后的粒子向高似然区域移动,从而有效地提高了系统状态估计精度.仿真实验表明,该算法是有效而稳定的. For the problem that serious weight degeneracy based on particle filtering and re-sampling leads to the sample impoverishment,a new particle filtering algorithm is proposed,which utilizes niching swarm intelligence algorithm for optimizing particle filtering. By multi-modal optimization,particles diversity and search ability are both enhanced. As a result,particles can move towards the high likelihood areas,which can increase the precision of system state estimation. Simulation results show that the proposed algorithm is effective and stable.
出处 《控制与决策》 EI CSCD 北大核心 2010年第2期316-320,共5页 Control and Decision
关键词 粒子滤波 粒子群优化 小生境技术 Particle filtering Particle swarm optimization Niching technique
  • 相关文献

参考文献10

  • 1Arulampalam M S, Maskell S,Gordon N, et al. A tutorial on particle filters for online nonlinear/non Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing, 2002,50(2) : 174-188.
  • 2Bhaskar H, Mihaylova L, Maskell S. Population based particle filtering [C]. IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications. Birmingham, 2008 : 31-38.
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4张琪,王鑫,胡昌华,蔡曦.人工免疫粒子滤波算法的研究[J].控制与决策,2008,23(3):293-296. 被引量:20
  • 5Li X R, Jilkov V P. Survey of maneuvering target tracking Part 1: Dynamic models[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1333- 1364.
  • 6Zhang J, Huang D S, Lok T M, et al. A novel adaptive sequential niche technique for multimodal function optimization[J]. Neuroeomputing, 2006. 69(16-18): 2396-2401.
  • 7Ursem R K. Multinational evolutionary algorithms[C], Proe of Congress of Evolutionary Computation. Washington, 1999:1663- 1640.
  • 8Yeniay O. Penalty function methods for constrained optimization with genetic algorithms [J]. Mathematical and Computational Applications, 2005, 10(1): 45-56.
  • 9Shi Y, Eberhart R C. A modified particle swarm optimizer[C]. Proc of the IEEE Conf on Evolutionary Computation. Anchorage, 1998: 69-73.
  • 10Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.

二级参考文献23

  • 1李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 2莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 4Bogdan K.Finding location using a particle filter and histogram matching[C].Proc of Artificial Intelligence and Soft Computing.Poland:Springer,2004:786-791.
  • 5Doucet A.On sequential simulation based methods for Bayesian filtering[J].Statistics and Computing,1998,10(3):197-208.
  • 6Thrun S.Particle filters in robotics[C].Proc of Uncertainty in AI.San Francisco:Morgan Kaufmann Publishers,2002:511-518.
  • 7Carpenter J,Clifford P,Fernhead P.An improved particle filter for non-linear problems[R].Oxford:University of Oxford,1997.
  • 8Van M R,Doucet A.The unscented particle filter[R].Cambridge:Cambridge University,2000.
  • 9Clapp T C.Statistical methods for the processing of communication data[D].Cambridge:University of Cambridge,2000.
  • 10Ronghua L,Bingrong H.Coevolution based adaptive monte Carlo localization[J].Int J of Advanced Robotic Systems,2004,1(3):183-190.

共引文献106

同被引文献64

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部