期刊文献+

含时滞的反应扩散方程组周期解的存在与稳定性 被引量:2

EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS FOR REACTION-DIFFUSION SYSTEMS WITH TIME DELAYS
下载PDF
导出
摘要 本文研究了一类反应项非单调的时滞反应扩散方程组.利用上、下解方法及不动点理论获得了此系统边值问题周期解存在性的充分条件,给出了证明其周期解稳定性的方法.最后通过化学中的一个典型模型说明了所得结果的意义. In this article, periodic solutions of reaction-diffusion systems with nonmonotone reaction functions and time delays are investigated. By using the method of upper and lower solutions and fixed point theorem, it is shown that periodic solutions of this system exist when the boundary value system has a pair of coupled -upper and lower solutions. Some methods for proving the stability of the periodic solution are also given. Finally, a model arised from chemistry is used to illustrate the obtained results.
出处 《数学杂志》 CSCD 北大核心 2010年第2期308-314,共7页 Journal of Mathematics
基金 重庆市教育委员会科学技术研究项目(KJ080511) 重庆市科委自然科学基金计划项目(CSTC 2008BB7415) 北京工业大学博士研究生创新计划项目
关键词 时滞 周期解 上、下解 反应扩散方程组 不动点理论 存在与稳定性 delay periodic solution upper and lower solution reaction-diffusion systems fixed point theorem existence and stability
  • 相关文献

参考文献11

二级参考文献6

共引文献24

同被引文献17

  • 1雒志学,王绵森.具有年龄结构的线性周期种群动力系统的最优收获控制问题[J].数学物理学报(A辑),2005,25(6):905-912. 被引量:26
  • 2叶山西,赵春.一类具有年龄分布和加权的种群系统的最优控制[J].应用数学,2007,20(3):562-567. 被引量:24
  • 3Wu J. Theory and Applications of Partial Functional Differential Equations[M]. New York: Springer-Verlag, 1996.
  • 4Erbe L H, Freedmann H I, Liu X Z, et al. Comparison principles for impulsive parabolic equations with application to models of single species growth[J]. J.Aust.Math.Soc.Ser, 1991, B32:382-400.
  • 5He L H, Liu A P. Existence and uniqueness of solutions for nonlinear impulsive partial equations with delay[J]. Nonlinear Analysis: Real World Applications, 2010, 11: 952-958.
  • 6Pao C V. Coupled nonlinear parabolic systems with time delays[J]. J.Math.Anal.Appl, 1995, 196:237-265.
  • 7Pao C V. Periodic Solution of Parabolic Systems with Time Delays[J]. J. Math.Anal. Appl, 2000, 251:251- 263.
  • 8Pao C V. Stability and attractivity of periodic solutions of parabolic systems with time delays[J]. J.Math.Anal.Ap. pl, 2005, 304:423-450.
  • 9Cheng Cui, Xiao wang. Existence and Stablity of Periodic Solutions and Almost Periodic Solutions of Immune Reaction Marchuk's Model[A].Processdings of the 5th International Congress on Mathematical Biology[C]. Nanjing:World Academic Press, 2011.
  • 10BARBU V, IANNELLI M. Optimal control of population dynamics[J]. Journal of Optimization Theory and Applications, 1999, 102(1) :1-14.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部