期刊文献+

具V-不变凸性的一类多目标控制问题的混合对偶性 被引量:3

MIXED TYPE DUALITY FOR A CLASS OF MULTIOBJECTIVE CONTROL PROBLEMS WITH V-INVEXITY
下载PDF
导出
摘要 本文研究了一类多目标控制问题的混合对偶性.利用函数的广义V-不变凸性条件,得出了关于有效解的弱对偶定理、强对偶定理和严格逆对偶定理,推广了多目标控制问题的对偶性结论. In this article, we investigate mixed type duality for a class of multiobjective control problems. By using the conditions of the generalized V-invexity on the functions involved, we obtain weak, strong, and strict converse duality theorems. This work extends many results on duality of multiobjective control problems established earlier.
出处 《数学杂志》 CSCD 北大核心 2010年第2期338-344,共7页 Journal of Mathematics
关键词 多目标控制问题 有效解 混合对偶 广义V-不变凸性 multiobjective control problem efficiency solutions mixed type duality generalized V-invexity.
  • 相关文献

参考文献8

  • 1Mond B, Smart I. Dality and sufficiency cotrol problems with invexity[J]. J. Math. Anal. Appl., 1988, 136: 325-333.
  • 2Mishra S K, Mukherjee R N. Multiobjective control problem with V-invexity [J]. J. Math. Anal. Appl., 1999, 235:1-12.
  • 3Bhatia D, Kumar. Multiobjective control problems with generalized invexity[J]. J. Math. Anal. Appl., 1995, 189: 676-692.
  • 4Liang Zhian, Ye Qingkai. Duality for a class of multiobjective control problems with generalized invexity[J]. J. Math. Anal. Appl., 2001, 256: 446-461.
  • 5Ahmad I, Gulati T R. Mixed duality for multiobjective variaitional problems with generalized cinvexity[J]. J. Math. Anal. Appl., 2005, 306: 669-683.
  • 6Xu Z C. Mixed type duality in multiobjective programming problems[J]. J. Math. Anal. Appl., 1996, 198: 621-635.
  • 7陈世国,祁传达.多目标变分问题的混合对偶性[J].数学的实践与认识,2003,33(12):97-102. 被引量:5
  • 8Mond B, Hanson M. Dality for cotrol problems[J]. SIAM. J. Control, 1968, 6(1): 114-120.

二级参考文献1

共引文献4

同被引文献19

  • 1Mond B, Hanson M A. Symmetric duality for variational problems [J]. J. Math. Anal. Appl., 1968, 23:161 172.
  • 2Smart I, Mond B. Symmetric duality with invexity in variational problems [J]. J. Math. Anal. Appl., 1990, 152: 536-545.
  • 3Gulati T R, Husain I, Ahmed A. Symmetric duality for multiobjective variational problems [J]. J. Math. Anal. Appl., 1997, 210: 22-38.
  • 4Kim D S, Lee W J. Symmetric duality for multiobjective variational problems with invexity[J]. J.Math. Anal. Appl., 1998, 218: 34-48.
  • 5Ahmad I, Sharma S. Symmetric duality for multiobjective fractional variational problems involving cones[J]. European J. Operational Research, 2008, 188: 695-704.
  • 6Ahmad I, Yaqub M, Ahmed A. Symmetric duality for multiobjective fractional variational problems with cones constraints[J]. J. Appl. Math. & Conputing, 2007, 23(1-2): 281-292.
  • 7Kim D S, Lee W J. Generalized symmetric duality for multiobjective variational problems with invexity[J]. J. Math. Anal. Appl., 1999, 234: 147-164.
  • 8Mishra S K, Mukherjee R N. On efficiency and duality for generalized symmetric[J]. J. Math. Anal. Appl., 1994, 187: 40-54.
  • 9Bazaraa M S, Goode J J. On symmetric duality in nonlinear programming[J]. Operations Research, 1973, 21: 1-9.
  • 10HANSON M A. Bounds for functionally convex optimal control problem[J].{H}Journal of Mathematical Analysis and Applications,1964,(08):84-89.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部