摘要
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH : H202 : H2O = 1 : 1 : 10 solution and HCI : H2O2 : H2O = 1 : 1 : 20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NHaOH : H2O = 1 : 5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH : H202 : H2O = 1 : 1 : 10 solution and HCI : H2O2 : H2O = 1 : 1 : 20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NHaOH : H2O = 1 : 5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
基金
supported by the Science and Technology Development Plan of Jilin Provincc of China(Nos.20075001,20086011).