期刊文献+

一类具有特殊曲率性质的(α,β)-度量 被引量:1

A Class of(α,β)-Metric with Special Curvature Properties
下载PDF
导出
摘要 在一般的(α,β)-度量F=αφ(s)与Riemann度量α的Ricci曲率之间的关系基础上,证明了一类特殊的(α,β)-度量F=α2/α+β,在维数n≥3的流形上,如果F具有迷向的Ricci曲率,且β是闭的1-形式,则其Ricci曲率等于零.从而得到如果F=αα+2β具有常Ricci曲率,并且β是闭的1-形式,则其Ricci曲率等于零. We studied an important class of(α,β)-metric on the basis of the relationship of Ricci curvature between Gi and α Gi.We verified that if F=α2α+β on an n dimension manifold M(n≥3) is of istropic Ricci curvature,i.e.Rmm=(n-1)c(x)F2,where c(x) is a scalar function on M and β is closed 1-form,then c(x)=0.Hence,we obtained that if F=α2/α+β is of constant Ricci curvature and β is closed,then c(x)=0.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期147-150,共4页 Journal of Southwest University(Natural Science Edition)
基金 重庆市教委科研资助项目(KJ071201)
关键词 RICCI曲率 迷向Ricci曲率 Β)-度量 Ricci curvature istropic Ricci curvature (α β)-metric
  • 相关文献

参考文献8

  • 1Matsumoto M. The Berwald Connection of Finsler Space with an (α, β) -Metric [J]. Tensor N S, 1991, 50:18 --21.
  • 2Cheng X Y, Shen Z M. Randers Metric with Special Curvature Properties [J]. Osaka J Math, 2003, 40:87 - 101.
  • 3Cheng X Y, Shen Z M. A Class of Finsler Metrics with Isotropic S-Curvature [J]. Israel Journal of Mathematics, 2009, 169: 317--340.
  • 4Chern S S, Shen Z M. Riemann Finster Geometry [M]. Singapore: World Scientific Publishers, 2005.
  • 5Shen Z M. Lansberg Curvature, S-Curvature and Riemann Curvature [M]. Cambridge: Cambridge University Press, 2004 : 50.
  • 6郭迎弟,王佳.一类具有迷向Ricci曲率的(α,β)度量[J].西南大学学报(自然科学版),2007,29(11):18-22. 被引量:4
  • 7黎芳,王佳.Kropina度量的一些射影性质及曲率性质[J].西南师范大学学报(自然科学版),2004,29(3):343-346. 被引量:3
  • 8李梁,崔宁伟,王佳.一类射影平坦且具有常曲率的(α,β)度量[J].西南师范大学学报(自然科学版),2006,31(6):28-31. 被引量:7

二级参考文献12

  • 1[1]Kitayama M,Azuma M,Matsumoto M.On Finsler Spaces with (α,β) -Metric.Regularity,Geodesics and Main Scalars[J].Hokkaido Univ.of Education (Section Ⅱ A),1995,46(1):1-10.
  • 2[2]Matsumoto M.Finsler Spaces with (α,β)-Metric of Douglas Type[J].Tensor N S,1998,60:123-134.
  • 3[3]Chern S S,Shen Z.Riemann-Finsler Geometry[M].Singapore:World Scientific Publishers,2005.
  • 4[4]Shen Z.Landsberg Curvature,S-Curvature and Riemann Curvature,in A Sampler of Riemann-Finsler Geometry[M].MSRI Series,Cambridge University Press,2004,50.
  • 5[5]Shen Z.Projectively Flat Finsler Metrics of Constant flag Curvature[J].Trans Amer Math Soc,2003,355(4):1713-1725.
  • 6Matsumoto Makoto. Finsler Spaces of Constant Curvature with Kropina Metric [J]. Tensor, 1991, 50: 194- 201.
  • 7Shen Zhongmin. Differential Geometry of Sprays and Finsler Spaces [ M ]. Singapore: Kluwer Publishers, 2001. 110 - 186.
  • 8Fukui M, Yamada T. On Projective Mappings in Finsler Geometry [J]. Tensor, 1981, 35: 216-222.
  • 9Matsumoto M. The Berwald Connection of a Finsler Space with an (α, β)-Metric [J]. Tensor, 1991, 50:18 - 21.
  • 10Matsumoto M. A Remarkable Connection in a Finsler Space with (a, β)-Metric [J]. Tensor, 1989, 48:241 -243.

共引文献9

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部