摘要
在一般的(α,β)-度量F=αφ(s)与Riemann度量α的Ricci曲率之间的关系基础上,证明了一类特殊的(α,β)-度量F=α2/α+β,在维数n≥3的流形上,如果F具有迷向的Ricci曲率,且β是闭的1-形式,则其Ricci曲率等于零.从而得到如果F=αα+2β具有常Ricci曲率,并且β是闭的1-形式,则其Ricci曲率等于零.
We studied an important class of(α,β)-metric on the basis of the relationship of Ricci curvature between Gi and α Gi.We verified that if F=α2α+β on an n dimension manifold M(n≥3) is of istropic Ricci curvature,i.e.Rmm=(n-1)c(x)F2,where c(x) is a scalar function on M and β is closed 1-form,then c(x)=0.Hence,we obtained that if F=α2/α+β is of constant Ricci curvature and β is closed,then c(x)=0.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期147-150,共4页
Journal of Southwest University(Natural Science Edition)
基金
重庆市教委科研资助项目(KJ071201)