期刊文献+

基于输出累积量的 ARMA(AR)系统的一致性阶次递推辩识(英文)

Consistent Order-recursive Identification of ARMA(AR) Systems with Noisy Output Cumulants
下载PDF
导出
摘要 本文提出了一种根据系统输出的观测数据对ARMA(AR)系统进行盲识别的新算法。该模型由独立同分布非高斯随机序列驱动,其输出序列中含方差未知的加性高斯噪声。通过求解基于三阶累积量谱的代价函数,该算法以模型阶次递推形式同时辩识ARMA的系统阶次和估计出系统参数。文章给出了该算法一致收敛性的证明,并对两类不同阶次的最小及非最小相位ARMA系统的AR参数及阶次辩识进行了数字仿真,结果令人满意。 In this paper the problem of determining the AR order and parameters of a nonminimum phase ARMA system from its output observation corrupted by additive Gaussian noise of unknown covariance is considered. The system is driven by a sequence of i. i. d. non- Gaussian random variables which is assumed unobservable. A novel consistent algorithm based on the third-order cumulants of output sequences is introduced. It is performed recursively by minimizing a well-defined cost function. Strong convergence and consistency of the algorithm are proved. Theoretical analysis and numerical simulation show that this order-recursive algorithm is satisfactory for both order and parameter identification of a non-minimum phase AR system which is subordinated to the ARMA system.
出处 《电路与系统学报》 CSCD 1998年第4期50-58,共9页 Journal of Circuits and Systems
关键词 盲系统辩识 ARMA系统 阶次递推 一致收敛性 Blind system identification, ARMA systems, Third- order cumulants, Cost function, Order-recursive estimation, Convergence, Consistency
  • 相关文献

参考文献11

  • 1F.NAKAJIMA.F.KOZIN,“A Characterization of Consistent Estimators”,IEEE Trans.on Automatic Control,vol.AC-24,No.5,1979,PP.758-765.
  • 2R.L.KASHYAP.“Inconsistency of the AIC Rule for Estimating the Order of Autoregressive Models”,IEEE Trans.on Automatic Control,vol.AC-25,No.5,1980,PP.996-998.
  • 3J.K,TUGNAIT,“Identification of Linear Stochastic Systems via Second-and Fourgh-order Cumulant Matching”,IEEE Trans.on Information Theory,vol.IT-33,No.3,1987,PP.393-407.
  • 4J.K.TUGNAIT.“Fitting Noncausal Autoregressive Signal Plus Noise Models to Noisy NonGaussian Linear Processes”,IEEE Trans.on Automatic Control,vol.AC-32,No.6,1987,PP.547-552.
  • 5G.B.GIANNAKIS,J.M.MENDEL,“Identification of Nonminimum Phase Systems Using Higher Order Statistics”,IEEE Trans.on ASSP,vol.37,No.3,1989,PP.360-377.
  • 6G.B.GIANNAKIS,“On the Identifiability of Non-Gaussian ARMA Models Using Cumulants”,IEEE Trans.on Automatic Control,vol.35,No.1,1990,PP.18-26.
  • 7G.B.GIANNAKIS,J.M.MENDEL,“Cumulant-Based Order Determination of Non-Gaussian ARMA Models”,IEEE Trans.on ASSP,vol.38,No.8,1990,PP.1411-1423.
  • 8J.K.TUGNAIT,“Consistent Parameter Estimation for Noncausal Autoregressive Models via Higher-order Statistics”,Automatica,vol.26,No.1,1990,PP.51-61.
  • 9J.K.TUGNAIT,“Consistent Order Selecton for Noncausal Autoregressive Models via Higher-order Statistics”,Automatica,vol.26,No.2,1990,PP.311-320.
  • 10J.K.TUGNAIT,“Linear Model Validation and Order Selection Using Higher-order Statistics”,IEEE Trans.on Signal Process-ing,vol.42,No.7,1994,pp.1728-1736.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部