期刊文献+

磁悬浮轴承数字控制器故障诊断与处理 被引量:6

Fault Diagnosis and Treatment for AMB Digital Controller
下载PDF
导出
摘要 对磁悬浮轴承数字控制器的可靠性进行了研究,根据磁悬浮轴承数字控制器的特点与结构,将其分为DSP芯片以及信号输入通道、信号输出通道三个部分,分析了每个部分可能发生的故障类型,针对不同的故障类型研究了相应的故障诊断与处理方法,并以美国TI公司的浮点DSP芯片TMS320VC33为核心研制了高可靠磁悬浮轴承数字控制器。应用该数字控制器在五自由度磁悬浮轴承系统上进行了可靠性验证试验,试验中,当转子处于30 000r/min的高转速下手动复位DSP芯片以模拟其发生故障,控制器能够在100μs内判断出故障并切换到备用DSP芯片,在整个故障处理过程中磁悬浮轴承系统保持稳定。同样,在转子处于30 000r/min的高转速下任意切断单个或多个信号传输通道,控制器能在20μs内判断出故障通道并切换到备用通道,且整个切换过程对转子状态没有任何影响。 The reliability of AMB digital controller was studied herein. According to the characteristics and structure of AMB digital controller, it was divided into three parts, named DSP chip, signal input channels and signal output channels respectively. The possible fault type of each part was analyzed. Aiming at each fault type, this paper developed a high--reliability AMB digital controller in which the TI's floating--point DSP chip TMS320VC33 severed as the core. Experiments that used to verify reliability of controller on the five degrees of freedom magnetic bearing system were done. In the experiments, when rotor is at the speed of 30 000r/min, the controller can diagnose the faults and switches to the reserve DSP in 100μs which is quick enough to guarantee the stabilization of the whole system after the main DSP chip is manually reset. Similarly, the rotor states stay the same after any of those input--output channels are cut off at the same high speed, the controller can quickly determine the failed channels and switch to the backup channels in 20μs.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第3期289-295,共7页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(2006AA05Z205) 江苏省"六大人才高峰计划"资助项目(07-D-013)
关键词 磁悬浮轴承 数字控制器 容错技术 DSP active magnetic bearing(AMB) digital controller fault-- tolerance technology DSP
  • 相关文献

参考文献10

二级参考文献23

  • 1张绍基.航空发动机控制系统的研发与展望[J].航空动力学报,2004,19(3):375-382. 被引量:87
  • 2程涛.小型涡喷发动机数控调节器的半实物仿真[J].航空动力学报,2004,19(3):383-386. 被引量:6
  • 3郭迎清,王海泉.涡扇发动机模型辨识及其控制器设计[J].现代制造工程,2006(9):73-74. 被引量:9
  • 4TI Incorporated.TMS320F28X DSP Serial Peripheral Interface (SPI) Reference Guide [Z].Dallas:TI Incorporated,2003.
  • 5Acht V M G, Damen A A H, Bosch P P J. On self-sensing magnetic levitated systems. In.. Proceedings of the 6th International Symposium on Magnetic Bearings, Cambridge, MA, 1998:538-547.
  • 6Noh M D, Maslen E H. Self-sensing magnetic bearings using parameter estimation. IEEE Transactions on Instrmentation and Measurement, 1997, 46(1): 45-50.
  • 7Lyons J P, Preston M A, Gurumoorthy R, et al. Design and control of a fault-tolerant active magnetic bearing system for aircraft engines. In: Proceedings of 4th International Symposium on Magnetic Bearings, 1994:449-454.
  • 8Maslen E H, Meeker D C. Fault tolerance of magnetic bearings by generalized bias current linearization. IEEE Transactions on Magnetics, 1995, 31(3): 2304-2314.
  • 9Yates S W, Williams R W. A fault-tolerant multiprocessor controller for magnetic bearings. IEEE Micro, 1988, 8(4):6-17.
  • 10Fedigan S J, Shen F, Ross R A. Design and implementation of a fault tolerant magnetic bearings controller. In:Proceedings of 5th International Symposium on Magnetic Bearings, Kanazawa, Japan, 1996:307-312.

共引文献30

同被引文献45

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部