期刊文献+

一种基于广度优先搜索的社区发现方法 被引量:5

A Community Discovery Method Based on Breadth-First-Search
下载PDF
导出
摘要 由于当前的算法不能很好地将网络的联通性和单个节点的属性综合考虑,分析了凝聚和分裂层次聚类经典算法的局限性,从而给出边的载荷、边的权重、连接度门限、图形分割等定义.综合考虑网络的拓扑结构和边的权重关系,提出了基于广度优先搜索的社会网络社区发现算法SoNetCD.算法通过删除社区之间的边而得到社区结构,它对社区之间的边判断准确,对社区内部的边误删率低.运用经典数据集进行实验的结果表明,该算法具有比经典GN算法更好的结果. In view of the existing algorithm that is unable to take better account of the network connectivity and the attributes of individual nodes comprehensively,the limitation of the typical algorithms of agglomerative and divisive clustering was analyzed,thus defining conceptually the edge loading,edge weight,connectivity threshold and graph segmentation.Then,a new algorithm SoNetCD based on BFS(breadth-first-search)is presented for discovering the communities in social networks,which takes both network topology and edge weight into consideration.Inter-community edges are cancelled to reveal the community structure in the algorithm,thus judging exactly the inter-community and lowering the failure rate of cancelling inner-community edges.Experimental results of a real-world social network dataset showed that the SoNetCD outperforms the typical GN algorithm in identifying community structure.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期346-349,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60872040) 辽宁省自然科学基金资助项目(20082037)
关键词 社会网络 社区发现 广度优先搜索 聚类 模块化 social networks community discovery breadth-first-search(BFS) clustering modularity
  • 相关文献

参考文献12

  • 1Newman M E J. Detecting community structure in networks [J]. The European Physical Journal B, 2004,38(2) :321 - 330.
  • 2Newman M E J, Girvan M. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004,69(2) : 1 - 15.
  • 3Pons P, Latapy M. Computing communities in large networks using random walks [ J ]. Journal of Graph Algorithms and Applications, 2006,10(2) : 191 - 218.
  • 4Girvan M, Newman M E J. Community structure in social and biological networks[J ]. PNAS, 2002,99 ( 12 ) : 7821 - 7826.
  • 5Ruan J H, Zhang W X. Identifying network communities with a high resolution[J]. Physical Review E, 2008,77(1 ) : 1 - 12.
  • 6Balakrishnah H, Deo N. Discovering communities in complex networks[ C]//ACMSE' 06. Melbourne, Florida: ACM, 2006 : 280 - 285.
  • 7Nanni M. Speeding-up hierarchical agglomerative clustering in presence of expensive metries[C] //PKDD 2005. Berlin: Springer-Verlag, 2005:378 - 387.
  • 8Ian D, Ravi S S. Agglomerative hierarchical clustering with constraints: theoretical and empirical results [C]//PKDD 2005. Berlin: Springer-Verlag, 2005 : 59 - 70.
  • 9Nurcan Y, Mutlu M, Xu X W, et al. A divisive hierarchical structural clustering algorithm for networks[ C] //Proceedings of the 7th IEEE ICDM Workshops. Washington D C: IEEE Computer Society, 2007 : 441 - 448.
  • 10Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004,69(6) : 1-5.

同被引文献95

  • 1贺仁杰,谭跃进.加权约束满足问题的改进深度优先搜索算法[J].系统工程学报,2004,19(5):512-516. 被引量:5
  • 2ROSVALL M. Information horizons in a complex world [ D ]. Umea : Umea University, 2006.
  • 3WATTS D J, STROGATZ S H. Collective dynamics of ' small world' networks[ J]. Nature, 1998,393(6684) :440-442.
  • 4BARABASI A L, BONABEAU E. Scale-free networks [ J ]. Scientific American ,2003,288(5 ) :60-69.
  • 5FORTUNATO S. Community detection in graphs [ J]. Physics Re- ports ,2010,486:75-174.
  • 6GIRVAN M, NEWMAN M E J. Community structure in social and bio- logical networks [ J ]. Proceedings of the National Academy of Sciences, 2002,99 ( 12 ) : 7821 - 7826.
  • 7NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69 ( 2 ) : 026113.
  • 8KRISHNAMURTHY B, WANG Jia. On network-aware clustering of Web clients[ C ]//Proc of Conference on Applications, Technologies, Architectures and Prot0cols for Computer Communication. New York: ACM Press ,2000:97,110.
  • 9REDDY P K, KITSUREGAWA M, SREEKANTH P, et al, A graph based approach to extract a neighborhood customer community for col- laborative filtering[ C ]//Proc of the 2nd International Workshop on Databases in Networked Information Systems. London: Springer-Ver- lag, 2002 : 188 - 200.
  • 10WU A Y, GARLAND M, HAN Jia-wei. Mining scale-free networks using geodesic clustering[ C ]//Proc of the 10th ACM SIGKDD Inter- national Conference on Knowledg Discovery and Data Mining. New York : ACM Press.,2004:719-724.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部