摘要
结合灰度共生矩阵特征和梯度相位互信息,提出了一种面向临床实际应用的两步匹配医学图像检索算法.该算法在提供良好分类性能的灰度共生矩阵特征的基础上,通过精化检索进一步提高了检索精度,以及检索算法的整体鲁棒性.使用该算法对包含有6种不同解剖部位的CT图像库进行检索实验.实验结果表明该算法在达到良好的检索准确性的同时,具有接近实时的查询响应速度.对该算法进行适当扩展,能容易地推广到实际医学检索应用中.
A new two-step medical image retrieval algorithm for clinical practice was proposed combining the gray level co-occurrence matrix with gradient phase mutual information.Based on the good classification performance of gray level co-occurrence matrix,the algorithm refines the retrieved process to improve its precision and the integral robustness of the retrieval algorithm.With the algorithm applied to 6 different anatomical positions of CT images,the testing results showed that the algorithm can provide high precision while attaining near real-time speed of response to queries.Expanding properly the algorithm,it can be easily applied to clinical practice in wider fields.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第3期358-361,365,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(60671050)
辽宁省重大科技计划项目(2008402001)
沈阳市重点技术创新计划项目(2008-9)
关键词
基于内容图像检索
灰度共生矩阵
梯度相位匹配
梯度相位互信息
content-based image retrieval
gray level co-occurrence matrix
gradient phase match
gradient phase mutual information