期刊文献+

基于灰度共生矩阵和梯度相位互信息的医学图像检索 被引量:6

Medical Image Retrieval Based on Gray Level Co-occurrence Matrix and Gradient Phase Mutual Information
下载PDF
导出
摘要 结合灰度共生矩阵特征和梯度相位互信息,提出了一种面向临床实际应用的两步匹配医学图像检索算法.该算法在提供良好分类性能的灰度共生矩阵特征的基础上,通过精化检索进一步提高了检索精度,以及检索算法的整体鲁棒性.使用该算法对包含有6种不同解剖部位的CT图像库进行检索实验.实验结果表明该算法在达到良好的检索准确性的同时,具有接近实时的查询响应速度.对该算法进行适当扩展,能容易地推广到实际医学检索应用中. A new two-step medical image retrieval algorithm for clinical practice was proposed combining the gray level co-occurrence matrix with gradient phase mutual information.Based on the good classification performance of gray level co-occurrence matrix,the algorithm refines the retrieved process to improve its precision and the integral robustness of the retrieval algorithm.With the algorithm applied to 6 different anatomical positions of CT images,the testing results showed that the algorithm can provide high precision while attaining near real-time speed of response to queries.Expanding properly the algorithm,it can be easily applied to clinical practice in wider fields.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期358-361,365,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60671050) 辽宁省重大科技计划项目(2008402001) 沈阳市重点技术创新计划项目(2008-9)
关键词 基于内容图像检索 灰度共生矩阵 梯度相位匹配 梯度相位互信息 content-based image retrieval gray level co-occurrence matrix gradient phase match gradient phase mutual information
  • 相关文献

参考文献9

  • 1Montagnat J, Duque H, Pierson J M, et al. Medical image content-based queries using the grid[ C] // Proceedings of the First European Health Grid Conference. Lyon: Elsevier, 2004:138 - 147.
  • 2Muller H, Michoux N, Bandon D, et al. A review of content- based image retrieval systems in medical application--clinical benefits mad future directions [ J ]. International Journal of Medical Informatics, 2004,73(2) : 1 - 23.
  • 3Arnold W, Smeulders M, Marcel W, et al. Content-based image retrieval at the end of the early years[J]. IEEE PAMI, 2000,22(12) : 1349 - 1380.
  • 4Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age[J ]. ACM Computing Surveys, 2008,40(2) : 1 - 60.
  • 5Marcelo C O, Walfredo C, de Paulo M A M. Towards applying content-based image retrieval in clinical routine[J]. Future Generation Computer Systems, 2007,23 : 466 - 474.
  • 6Haralick R M, Shanmuga K, Dinstein I. Texture features for image classification[J]. IEEE Trans on Systems, Man, and Cybernetics, 1973,3(6) :610 - 621.
  • 7Ramtin S, Parastoo S, Rodney A K. Gradient intensity: a new information-based registration method [ C ]// IEEE, Computer Vision and Pattern Recognition. Minnesota: IEEE, 2007:1 - 8.
  • 8Pluim J P W, Maintz J B A, Viergever M A. Mutualinformation-based registration of medical images: a survey[ J ]. IEEE Trans on Medical Imaging, 2003,22(8) :986 1004.
  • 9Jenkinson M, Smith S. A global optimization method for robust affine registration of brain images[J ]. Medical Image Analysis, 2001,5:143 - 156.

同被引文献83

  • 1刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报(A辑),2005,10(5):579-584. 被引量:58
  • 2蒲亦非,袁晓,廖科,陈忠林,周激流.现代信号分析与处理中分数阶微积分的五种数值实现算法[J].四川大学学报(工程科学版),2005,37(5):118-124. 被引量:31
  • 3吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 4王波,姚宏宇,李弼程.一种有效的基于灰度共生矩阵的图像检索方法[J].武汉大学学报(信息科学版),2006,31(9):761-764. 被引量:20
  • 5MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations [M]. USA:John Wiley & Sons,1993.
  • 6ZHANGW W , ZHOU SB , LI H , et al. Chaos ina fractional-order rossler system [J]. Chaos, Solitons and Fractals, 2009, 42(3):1684 -1691.
  • 7HUANG P W, DAI S K, LIN P L. Texture image re trieval and image segmentation using composite sub-band gradient vectors[J].Journal of Visual Communication and Image Representation, 2006, 17(5) :947-957.
  • 8FOUNTAIN S R, TAN T N. Efficient rotation invari ant texture features for content based image retrieval [J].Pattern Recognition, 1998, 31(11):1725- 1732.
  • 9MAJUMDER A, IRANI S. Perception-based contrast enhancement of images [J]. ACM Transactions on Ap plied Perception, 2007, 4(3):1-22.
  • 10COLEMAN S A, SUGANTHAN S, SCOTNEY B W Gradient operators for feature extraction and characteri sation in range images [J].Pattern Recognition Letters, 2010, 31(9):1028-1040.

引证文献6

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部