期刊文献+

化学吸附氧诱导Cu(100)表面重构.

Structure of Reconstructed Cu(100) Surface Induced by Dissociative Adsorption of Gaseous Oxygen
下载PDF
导出
摘要 用低能电子衍射(LEED)和扫描隧道显微镜技术研究了氧气在Cu(100)表面化学吸附所形成的表面重构结构.在低覆盖度下,实验上观察到了两个有序重构的混合相,分别为c(2×2)O重构和(√2×2√2)R45°-O重构.在氧原子的覆盖度逐渐增加的过程中,c(2×2)O重构区域的面积逐渐减小.在初始氧化阶段,实验上观察到了呈条状的“锯齿”形的重构结构,这些锯齿形的结构是由相邻的局域化的c(2×2)区域的边界区域(Cu)构成的.STM实验发现,相对于其他重构区域,这些锯齿形的重构区域与有机分子之间存在更加强烈的相互作用.通过分析在不同退火温度下样品LEED衍射点的变化,研究了重构结构的热稳定性,发现三种结构的热稳定性顺序是:锯齿结构〉c(2×2)O重构〉(√2×2√2)R45°-O重构. The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure〉c(2×2)〉(√2×2√2)R45°-O.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期18-22,I0001,共6页 化学物理学报(英文)
基金 ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.60506019).
关键词 结构改造 解离吸附 表面氧 扫描隧道显微镜 诱导 气态 低能电子衍射 Surface reconstruction, Chemical adsorption, Scanning tunneling microscopy,Structural phase transition
  • 相关文献

参考文献24

  • 1F. Zaera, Chem. Rec. 5, 133 (2005).
  • 2W. Wang, O. K. Varghese, C. Ruan, M. Paulose, and C. A. Grimes, J. Mater. Res. 18, 2756 (2003).
  • 3S. T. Shishiyanu, T. S. Shishiyanu, and O. I. Lupan, Sens. Actuators B 113, 468 (2006).
  • 4P. S. Peercy, Nature (London) 406, 1023 (2000).
  • 5A. E. Braun, Semicond. Int. 9, 58 (1999).
  • 6P. J. Sebastian, J. Quintana, F. Avila, and X. Mathew, Surf. Eng. 16, 47 (2000).
  • 7A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).
  • 8M. Okada, L. Vattuone, A. Gerbi, L. Savio, M. Rocca, K. Moritani, Y. Teraoka, and T. Kasai, J. Phys. Chem. C 111, 17340 (2007).
  • 9P. Junell, M. Ahonen, M. Hirsimaki, and M. Valden, Surf. Rev. Lett. 11,457 (2004).
  • 10T.Fujita, Y. Okawa, Y. Matsumoto, and K. Tanaka, Phys. Rev. B 54, 2167 (1996).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部