期刊文献+

一种基于矩阵的频繁项集更新算法 被引量:2

Updating algorithm based on matrix for mining frequent item sets
下载PDF
导出
摘要 针对相关算法在处理频繁项集更新时所存在的问题,提出了一种基于矩阵的频繁项集更新算法。该算法首先以时间为基准将更新后的数据库分为原数据库和新增数据库,分别将它们转换为0-1矩阵,通过矩阵裁剪、位运算产生新增频繁项集,并利用已有频繁项集更新原有频繁项集。实验仿真结果不但证明了该算法的可行性和高效性,而且还证明了它适合大型、稠密性数据库的频繁项集更新。 Aiming at updating problems of frequent item sets, this paper proposed an updating algorithm based on matrix (UABM) for mining frequent item sets. Divided the updated database into original database and new one based on time. Convetted these databases into matrixes. Got the new frequent sets by matrix cropping and the bit operation, and updated the gotten frequent item sets on gotten ones. The experiments show the algorithm is not only feasible and efficient but also fit to update freguent item sets for a large-scale and dense data base.
作者 徐嘉莉 陈佳
出处 《计算机应用研究》 CSCD 北大核心 2010年第3期837-840,863,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA01Z443) 华为软件技术有限公司高校合作资助项目(YBIN2007243)
关键词 数据挖掘 关联规则 频繁项集 更新 data mining association rules frequent item sets updating
  • 相关文献

参考文献11

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 1993:207-216.
  • 2AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [ C ]//Proc of the 20th International Conference on VLDB. Santiago Chile: [ s,n] ,1994:487-499.
  • 3HAN J, KAMBER M. Data mining: concepts and techniques [ M ]. Beijing : Higher Education Press, 2001 : 123-140.
  • 4HAN Jia-wei, PEI Jian, YIN Yi-wen. Mining frequent patterns without candidate generation : a frequent-pattern tree approach [ J ]. Data Mining and Knowledge Discovery, 2004,8( 1 ) :53-87.
  • 5WANG Jian-yong, Hart J, LU Y, et al. An efficient algorithm for mining top-k frequent dosed itemsets [ J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (5) :652-663.
  • 6CHEUNG D W, HAN Jia-wei, NG V, et al. Maintenance of discovered association rules in large database : an incremental updating technique [ C ]//Proc of the 12th International Conference on Data Engineering. New Orleans : IEEE Computer Society, 1996 : 106-114.
  • 7朱红蕾,李明.一种高效维护关联规则的增量算法[J].计算机应用研究,2004,21(9):107-109. 被引量:9
  • 8冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 9Xiu-LiMa,Yun-HaiTong,Shi-WeiTang,Dong-QingYang.Efficient Incremental Maintenance of Frequent Patterns with FP-Tree[J].Journal of Computer Science & Technology,2004,19(6):876-884. 被引量:9
  • 10张素兰.一种基于事务压缩的关联规则优化算法[J].计算机工程与设计,2006,27(18):3450-3453. 被引量:16

二级参考文献31

  • 1Agrawal R,Imilienski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc of the ACM SIGMOD Int'l Conf On Management of data,May 1993.
  • 2Raghavan V,Hafez A.Dynarnic Data Mining [EB/OL].http://www. cacs.louisiana.edu/Publica-tions/Raghavan/HR00,pd f.
  • 3Agrawal C,Yu, P.Minging large itemsets for association rules[EB/ OL].Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 1997.
  • 4Zaki M,Parthasarathy S,Ogihara M,et al.New algorithms for fast discovery of association rules[C]//Proe of the 3rd Int'l Conf on Knowledge Discovery and data Mining.AAAI Press, 1997.
  • 5Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// 20th VLDB Conf,Sept. 1994.
  • 6Veloso A.Mining frequent itemsets in evolving databases[C]//Proc of the Int Conf on Data Mining,SDM,April,SIAM,2002.
  • 7R Agrawal,T Imielinski,A Swami.Mining Association Rules between Sets of Items in Large Databases[C].Proc.of the ACM SIGMOD Int.Conf.on Management of Data(ACM SIGMOD'93),Washington,USA,1993.207-216.
  • 8R Agrawal,R Srikant.Fast Algorithms for Mining Association Rules[C].Proc.of the 20th Int.Conf.on Very Large Databases(VLDB'94),Santiago,Chile,1994.487-499.
  • 9J S Park,M S Chen,P S Yu.An Effective Hash-based Algorithm for Mining Association Rules[C].Proc.of the ACM SIGMOD Int.Conf.on Management of Data (ACM SIGMOD'95),San Jose,California,1995.175-186.
  • 10A Savasere,E Omiecinski,S Navathe.An Efficient Algorithm for Mi-ning Association Rules in Large Databases[C].Proc.of'95 Int.Conf.Very Large Database (VLDB'95),Zurich,Switzerland,1995.

共引文献250

同被引文献20

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2贾彩燕,陆汝钤.关联规则挖掘的取样误差量化模型和快速估计算法[J].计算机学报,2006,29(4):625-634. 被引量:7
  • 3朱意霞,姚力文,黄水源,黄龙军.基于排序矩阵和树的关联规则挖掘算法[J].计算机科学,2006,33(7):196-198. 被引量:7
  • 4Haifeng Lathing Chen. Mining non-derivable frequent itemsets over data stream [J]. Data&Knowledge En- gineering, 2009(68) :481-498.
  • 5Hua-Fu Li. Interactive mining of top-K frequent closed, itemsets from data streams[J]. Expert Systems with Applications, 2009(36): 10779-10788.
  • 6Joong Hyuk Chang, Hye-Chung (Monica) Kum Fre- quency-based load shedding over a data stream of tup- les [J]. Information Sciences, 2009(179) : 3733-3744.
  • 7Jin R, Agrawal G. Efficient decision tree construction on streaming data [C] //The ACM SIGKDD 9th Inter- national Conference on Knowledge Discovery and Data Mining. Washington, 2003: 2-6.
  • 8Raymond T Ng,Jiewei HarL Efficient and effetive clus- tering methods of spatial data mining [C]// Proceed- ings of the 20th VLDB Conference. Chile: Santiago, 1994: 144-155.
  • 9Shichao Zhang, Zhi Jin, Jingli Lu. Summary queries for frequent itemsets mining [J] The Journal of Systems and Software, 2010(83): 405-411.
  • 10Tao Li, Shenghuo Zhu, Mitsunori Ogihara. A new dis- tributed data mining model based on similarity [C] ff Proceedings of the 18th Annual ACM Symposium on Applied Computing. Canada: Vancouver, 2003 : 432- 436.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部