期刊文献+

K-means聚类与SVDD结合的新的分类算法 被引量:7

New classification algorithm K-means clustering combined with SVDD
下载PDF
导出
摘要 为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部支持向量集训练,即得到最终的全局决策边界。由于采用了分而治之并行计算的方法,提高了算法的效率。对合成数据(200个)和实际数据的实验结果表明,所提算法较SVDD算法,训练时间降低为原来的10%,分类错误率较原来的降低了近一半。因此,所提算法提高了分类精度和算法效率。 This paper proposed an improved SVDD algorithm by introducing a local density degree for each data point in order to improve the support vector data description(SVDD) classification accuracy. Proved to improve the classification accuracy, but the increase of computational complexity. To this end, first divided the whole data set into k clusters using K-means cluste- ring algorithm. Then, trained the k clusters in parallel by improved SVDD. Finally, trained the k obtained local support vector sets and got the final overall decision border. As a result of divide and conquer method and parallel computing, improved the efficiency of the algorithm. Synthetic data and real data experimental results show that the proposed method than SVDD algorithm, training time is reduced to 10% and classification error rate lower than the original by almost half. Therefore, the proposed algorithm improves the classification accuracy and algorithm efficiency.
出处 《计算机应用研究》 CSCD 北大核心 2010年第3期883-886,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60773049) 江苏大学高级人才启动基金资助项目(09JDG041)
关键词 单值分类 支持向量数据描述 K—means聚类 局部疏密度 one-class classification support vector data description K-means clustering local density degree
  • 相关文献

参考文献9

  • 1JUSZCZAK P, ADAMS N M, HAND D J, et al. Off-the-peg and bespoke classifiers for fraud detection[ J]. Computation Statistics and Data Analysis, 2008,52 (9) :4521-4532.
  • 2TAX D M J. Support vector data description [ J]. Machine Learning, 2004,54(1):45-46.
  • 3LEE Y J, MANGASARIAN O L. A smooth support vector machine for classification [ J ]. Computational Optimization and Applications, 2001,20( 1 ) :5-22.
  • 4KEERTHI S S, GILBERT E G. Convergence of a generalized SMO algorithm for SVM classifier design[ J]. Machine Learning, 2002, 46( 1 ) :351-360.
  • 5COLLOBERT R, BENGIO S, BENGIO Y. A parallel mixture of SVMs for very large scale problems [ J ]. Neural Computation, 2002,14(5) :143-160.
  • 6LEE K Y, KIM D W, LEE D, et al. Improving support vector data description using local density degree [ J ]. Pattern Recognition, 2005,38(10) :1768-1771.
  • 7GUO S M, CHEN L C, TSAI J S H. A boundary method for outlier detection based on support vector domain description [ J ]. Pattern Recognition, 2009,42( 1 ) :77-83.
  • 8赵峰,张军英,刘敬.一种改善支撑向量域描述性能的核优化算法[J].自动化学报,2008,34(9):1122-1127. 被引量:16
  • 9NEWMAN D J, HETTICH S, BLAKE C L, et al. UCI repository of machine learning databases [ EB/OL ]. ( 1998 ). http://www.ics.uci.edu/-mlearn/MLRepository.html.

二级参考文献11

  • 1Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54(1): 45-66.
  • 2Lee K Y, Kim D W, Lee D, Lee K H. Improving support vector data description using local density degree. Pattern Recognition, 2005, 38(10): 1768-1771.
  • 3Vapnik V N. The Nature of Statistical Learning Theory. New York: John Wiley and Sons, 2000.
  • 4Xin D, Wu Z H, Zhang W F. Support vector domain description for speaker recognition. In: Proceedings of the 2001 IEEE Signal Processing Society Workshop on Neutral Networks for Signal Processing XI. North Falmouth, USA: IEEE, 2001. 481-488.
  • 5Seo J, Ko H. Face detection using support vector domain description in color images. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA: IEEE, 2004. 729-732.
  • 6Ypma A, Tax D M J, Duin R P W. Robust machine fault detection with independent component analysis and support vector data description. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neutral Networks for Signal Processing IX. Madison, USA: IEEE, 1999. 67-76.
  • 7Ban T, Abe S. Implementing multi-class classifiers by oneclass classification methods. In: Proceedings of IEEE International Joint Conference on Neural Networks. Vancouver B C, Canada: IEEE, 2006. 327-332.
  • 8Hyvarinen A. New approximations of differential entropy for independent component analysis and projection pursuit. In: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10. Cambridge, USA: MIT Press, 1998. 273-279.
  • 9Amari S, Cichocki A, Yang H H. A new learning algorithm for blind source separation. In: Proceedings of Advances in Neural Information Processing System. Cambridge, USA: MIT Press, 1996. 757-763.
  • 10MIT Center for Biological and Computation Learning. CBCL face database [Online], available: http://www.ai.mit. edu/projects/cbcl, January 6, 2007.

共引文献15

同被引文献77

  • 1孙才新,许高峰,唐炬,陆宠惠,侍海军.以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J].中国电机工程学报,2005,25(3):100-104. 被引量:62
  • 2李辉,程琤,张安,沈莹.基于反馈结构的多传感器自适应航迹融合算法[J].计算机学报,2006,29(12):2232-2237. 被引量:6
  • 3KRESSEL U. Palrwise classification and support vector machines [M]//Advances in Kernel Methods. Cambridge: MTT Press, 1999: 255- 268.
  • 4BOTTOU L, CORTES C, DENKER J S. Comparison of classifier methods a case study in hand written digit recognition[ C]//Proc of the 12th International Conference on Pattern Recognition. 1994:77-82.
  • 5DIETTERICH T G, BAKIRI G. Solving multi-class learning problems via error-correcting output codes [ J ]. Journal of Artificial Intelligence Research, 1995, 2( 1 ) :263-286.
  • 6YANG Zhi-xia, DENG Nai-yang, TIAN Ying-jie. A multi-class classification algorithm based on ordinal regression machine[C]//Proc of International Conference on Computational Intelligence for Modelling, Control and Automation & Intelligent Agents, Web Technologies and Internet Commerce. Washington DC : IEEE Computer Society, 2005 : 810-815.
  • 7CRAMMER K, SINGER Y. On the learnability and design of output codes for multiclass problems[J]. Machine Learning, 2002, 47(2- 3) : 201-233.
  • 8艾薇,刘峥.雷达/红外复合导引头信息融合技术研究[J].航空兵器,2007,14(4):30-33. 被引量:8
  • 9王狂飙.激光制导武器的现状、关键技术与发展[J].红外与激光工程,2007,36(5):651-655. 被引量:68
  • 10Stelios Krinidis, Vassilios Chatzis. A robust fuzzy local infor- mation C-means clustering algorithm [J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328-1337.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部