期刊文献+

基于语义特征的文本情感倾向识别研究 被引量:7

Text sentiment orientation identification based on semantic feature
下载PDF
导出
摘要 由于网络评论用语的多样性,常用的文本主题分类方法并不能完全适应情感倾向识别。针对这个问题,从语义理解的角度出发,提出一种基于语义特征的情感倾向识别方法,通过增加语义特征使得原始文本表现出更加明确的情感倾向,并且更加容易区分。实验结果表明了该方法的有效性。 Because of the diversity of network comments, common method of text topic classification can not completely adapt to the orientation identification. To solve this problem, this paper proposed a method of text orientation identification based on semantic feature from the point of view of semantic understanding. Expressed sentiment orientation of original text definitely and distinguished original text more precisely than that without semantic feature because of increasing semantic feature. The experimental results indicate the validity of the method.
出处 《计算机应用研究》 CSCD 北大核心 2010年第3期992-994,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60842003)
关键词 语义特征 倾向识别 情感分类 主题分类 semantic feature orientation identification emotion classification topic classification
  • 相关文献

参考文献10

  • 1TURNEY P D. Thumbs'up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [ C ]//Proc of the 40th Annual Meeting of the Association for Computational Linguistics. Morristown, NJ: Association for Computational Lingnistown, 2002: 417-424.
  • 2PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of EMNLP'02. Morristown, NJ : Association for Computational Lingnistown, 2002 : 79- 86.
  • 3HU M, LIU B. Mining and summarizing customer reviews[C]//Proc of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004:168-177.
  • 4王素格,魏英.停用词表对中文文本情感分类的影响[J].情报学报,2008,27(2):175-179. 被引量:22
  • 5徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 6刘群,李素建.基于《知网》的词汇语义相似度计算[EB/OL].http://www.keenage.com/papers.
  • 7YANG Yi-ming, PEDERSON J O. A comparative study on feature selection in text categorization[ C ]//Proc of the 14th International Conference on Machine Learning. Sore Francisco, CA:Morgan Kanfmann Publishers Inc ,1997:412-420.
  • 8ZHANG Qi-rui , ZHANG Ling , DONG Shou-bin, et al: Document indexing in text categorization [ C ]//Proc of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou : [ s. n. ] , 2005:3792- 3796.
  • 9YANG Y, LIU X. A reexamination of text categorization methods [ C]//Proc of the 22nd Annual Internationol ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR' 99 ). Berkeley: ACM Press, 1999:42-49.
  • 10周茜,赵明生,扈旻.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):17-23. 被引量:165

二级参考文献28

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:59
  • 2顾益军,樊孝忠,王建华,汪涛,黄维金.中文停用词表的自动选取[J].北京理工大学学报,2005,25(4):337-340. 被引量:35
  • 3金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5董振东 董强.[EB/OL].知网.http://www.keenage.com,.
  • 6Yang Yiming,Pederson J O.A Comparative Study on Feature Selection in Text Categorization [A].Proceedings of the 14th International Conference on Machine learning[C].Nashville:Morgan Kaufmann,1997:412-420.
  • 7Y.Yang.Noise reduction in a statistical approach to text categorization[A].Proceedings of the 18th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR95)[C].Seattle:ACM Press,1995:256-263.
  • 8Thorsten Joachims,Text Categorization with Support Vector Machines:Learning with Many Relevant Features[A],In:European Conferrence on Machine Learning (ECML)[C].Berlin:Springer,1998,137-142.
  • 9Mlademnic,D.,Grobelnik,M.Feature Selection for unbalanced class distribution and Nave Bayees[A].Proceedings of the Sixteenth International Conference on Machine Learning[C].Bled:Morgan Kaufmann,1999:258-267.
  • 10梁久祯 兰东俊 扈旻.基于先验知识的网页特征压缩与线性分类器设计[A]..第十二届全国神经计算学术大会论文集[C].北京:人民邮电出版社,2002.494-501.

共引文献314

同被引文献62

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部