期刊文献+

基于牛顿多边形的曲线亏格公式

Genus Formula of Curve based on the Newton Polygon
下载PDF
导出
摘要 曲线的亏格数是重要的双有理不变量,曲线的分类问题便由亏格数给出解答.文中给出了一种计算不可约曲线的亏格的新公式,通过给出一条不可约曲线所对应的牛顿多边形,可以建立单项式变换,因此利用单项式变换达到对曲线奇点的分解,并得到曲线亏格公式中所需的其他变量,这种算法能够更直观更快速的计算曲线的亏格. The genus of a curve is an important birational invariants, the solution of curves'classification is by the genus. The paper demonstrates a new formula for the genus of an irreducible curve, by the Newton polygon of an irreducible curve, we can establish monomial transform, so as to resolve the singularity of a curve, and obtain the other invariants of the genus formula, so we can get the genus of a curve more visual and quickly.
作者 刘玲玲
出处 《通化师范学院学报》 2010年第2期13-15,共3页 Journal of Tonghua Normal University
关键词 代数曲线 亏格 单项式变换 牛顿多边形 分支点 algebraic curve genus monomial transform Newton polygon branch point
  • 相关文献

参考文献8

  • 1R.哈茨霍恩.代数几何[M].冯克勤,刘木兰,胥鸣伟,译.北京:北京科学出版社,2001:27-458.
  • 2E. Brieskom and H. Knorrer. Plane algebraic curves [M]. BirkhauserVerlag. Basel, 1986:477 - 589.
  • 3R. Walker. Algebraic curves[M]. Princeton Mathematical Series 13Princeton University Press and Oxford University Press. Princeton, N. J, 1950:245 - 367.
  • 4E. Casas - Alvero. Singularities of plane curves [ M ]. Berlin : Springer - verlag, 1973:239 - 284.
  • 5B.L.范德瓦尔登.代数几何引论[M].第二版.李培谦,李乔,译.北京:北京科学出版社,2008:221-223.
  • 6D. Chudnovsky and G. Chudnovsky. On expansion of algebraic functions in power and Puiseux seriesI[ J ]. Complexity, 1986(2 ) :271 -294.
  • 7W. Fulton. Algebraic curves [M]. New York : Amsterdam, 1969:267 - 278.
  • 8Sheng- M ingMa. A fast algorithm for curve singularities [ J ]. Math. Soc, 2004 (69) :403 -414.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部