期刊文献+

基于粒子滤波跟踪方法研究 被引量:5

Study on Particle Filter Based Tracking Method
下载PDF
导出
摘要 文章针对道路上的车辆跟踪问题,提出了粒子滤波跟踪算法。粒子滤波通过非参数化的蒙特卡罗模拟方法来实现递推贝叶斯滤波,适用于任何能用状态空间模型表示的非线性系统,以及传统卡尔曼滤波无法表示的非线性系统,精度可以逼进最优估计。粒子滤波方法的使用非常灵活,容易实现,具有并行结构,实用性强。文章的主要研究内容包括粒子滤波理论及其实现方法;利用粒子滤波理论来解决目标跟踪问题,构建基于粒子滤波的跟踪框架。 This dissertation is an exploration on particle filter based Visual Tracking method. The aim is to improve the tracking stability under complex background and propose a practical method to track deformable object. Particle filter realizes recursive Bayesian filter via Monte Carlo simulation. The method is suitable for any non-linear system that could be represented with state model. It is more practical than conventional Kalman filter and its precision could approach optimal estimation. Particle filter is flexible and easy to be implemented. And it has a parallel structure. This dissertation studies on the particle filter and its implementation. The method is used to solve tracking problem and the tracking framework is formed accordingly.
作者 沈玉娟 王健
出处 《仪表技术》 2010年第3期55-57,共3页 Instrumentation Technology
关键词 蒙特卡罗模拟 粒子滤波 车辆跟踪 Monte Carlo simulation particle filter vehicle tracking
  • 相关文献

参考文献4

  • 1M. Arulampalam, S. Maskell, N. Gordon. A Tutorial on Particle Filters for Online Non-linear/Non-Gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing, 2002,50 ( 2 ) : 174 - 188.
  • 2A. Doucet, J. delTreitas, N. Gordon. Sequential Monte Carlo methods practice [ M ]. New-York : Springer-Verlag, 2001.
  • 3A. Doucet, S. Godsill, Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statist. Computer, 2000 ( 10 ) : 197 - 208.
  • 4MA Song-de. Computer Vision [ M ]. Beijing: Science Press, 1998.

同被引文献47

  • 1杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 2顾潮琪,周德云,曲艺海.一种精确跟踪机动目标的滤波算法的研究[J].电光与控制,2007,14(2):8-11. 被引量:7
  • 3BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with markovian switching coefficients [ J]. IEEE Trans on Automatic Control. 1988, 33(8) :780-783.
  • 4朝磊 马晓莹.一种基于IMM-KF的机动目标跟踪算法.数据通信,2009,:66-68.
  • 5MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking:As urvey [ J ]. IEEE Transactions on Aerospace and Electronic Systems. 1998:34( 1 ) : 103-123.
  • 6GORDON N J, SALMOND D J, SMITH A F M. Novel approaeh to nonlin-ear/non-Gaussian Baye sianstate estimation [ J ]. IEE Proe. Radar and Signal Processing 1993,140 (2) : 107-113.
  • 7Boers Y, Driessen H, Schipper L, et ol. Particle filter based sensor selection in binary sensor networks. Proceedings of the llth International Conference on Information Fusion, Cologne, Germany, 2008:1-7.
  • 8Djuric P M, Vemula M, Bugallo M F. Signal processing by particle filtering for binary sensor networks. Proceedings of IEEE llth Digital Signal Processing Workshop, New Mexico, USA, 2004:263-267.
  • 9Aslam J, Butler Z, Constantin F, et at. Tracking a moving object with a binary sensor network. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys'03), Los Angeles, CA, USA, 2003:150-161.
  • 10Pitt M K, Shepard N. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 1999, 94 (446): 590-599.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部