期刊文献+

含两种捕食者和两种竞争食饵的扩散系统的稳定性

Asymptotic stability in a two predators-two competitive preys ecosystem with diffusion
下载PDF
导出
摘要 讨论一类含两种捕食者和两种竞争食饵的捕食者-食饵模型解的存在性和一致有界性.应用线性化方法研究了该模型非负平衡点的局部渐近稳定性;应用Lyapunov方法给出了该模型正平衡点全局渐近稳定的充分条件. The existence and the uniform boundeness of solutions for a predator-prey model, which is consisted of two predators and two competitive preys, are discussed in this paper. The local asymptotic stability of the nonnegative equilibrium points to the model is obtained by using linearization, and a sufficient condition for the global asymptotic stability of the positive equilibrium points is given by a Lyapunov function.
作者 王永斌
机构地区 青海大学基础部
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第2期5-10,共6页 Journal of Northwest Normal University(Natural Science)
关键词 捕食者-食饵模型 平衡点 LYAPUNOV函数 局部渐近稳定性 全局渐近稳定性 predator-prey model equilibrium point Lyapunov function local asymptotic stability global asymptotic stability
  • 相关文献

参考文献8

  • 1FREEDMAN H I. Deterministic Mathematical Models in Population Ecology [M]. New York: Marcel Dekker, 1980.
  • 2MAY R M. Stability in multispecies community models[J]. Math Biosci, 1971, 12: 59-79.
  • 3LIN Zhi-gui, PEDERSEN M. Stability in a diffusive food-chain model with Michaelis-Menten functional response[J]. Nonlinear Analysis, 2004, 57: 421- 433.
  • 4SONG Xiang. Extinction and Permanence of a Two-prey Two-predator System with Impulsive on the Predator[M]. 北京:科学出版社,2006:1121-1136.
  • 5LADYZENSKAJA O A, SOLONNIKOV V A, URLCEVA N N. Linear and Quasilinear Equations of Parabobic Type[M]. Povidence, RI: American Mathematical Society, 1968.
  • 6叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 7HENRY D. Geometric Theory of Semilinear Parabolic Equations[M]. Lecture Notes in Mathematics Vol. 840, Berlin, New York.. Springer, 1993.
  • 8BROWN K J, DUNNE P C, GARDNER R A. A semilinear parabolic system arising in the theory of superconductivity [ J ]. J Differential Equations, 1981, 40: 232-252.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部