期刊文献+

一种基于贪心搜索的实时多目标遮挡处理算法 被引量:4

A Greedy Searching Algorithm for Multiple Object Tracking and Occlusion Handling
下载PDF
导出
摘要 提出了一种固定摄像机遮挡条件下的多目标跟踪算法,包括基于区域相关的运动前景分割、基于合并–分裂检测的数据关联和基于贪心搜索的遮挡目标定位三部分.该算法的主要特点表现在:1)将遮挡条件下的目标跟踪问题转化为一个已知目标数量和特征的图像分类问题;2)用贪心搜索和积分图算法快速定位遮挡中的目标,保证了算法的实时性;3)对目标数量无约束,能够处理多目标相互遮挡下的跟踪问题(发生遮挡的目标数量大于等于2),且对目标的遮挡程度和目标运动模式无约束,具有良好的可扩展性.采用手工标定的IBM多人遮挡数据库的测试结果证明了算法的有效性. This paper presents a novel real-time multiple object tracking algorithm,which contains three parts:region correlation based foreground segmentation,merging-splitting based data association and greedy searching based occluded object localization.The main characteristics of the proposed algorithm are summarized as follows:1) the multiple object tracking and occlusion handling problem is successfully changed into an image classification problem with prior knowledge of object number and feature;2) a highly effcient greedy searching method is presented to meet real-time capability;3) it has good performance in expansibility,and it has no constraints about the number of occluded objects,the occlusion ratio and the object s motion model.Experiment results with hand labeled IBM database demonstrate that the method is effective and effcient.
出处 《自动化学报》 EI CSCD 北大核心 2010年第3期375-384,共10页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2009AA01Z315) 国家自然科学基金(60903126 60872145 60634030) 高等学校科技创新工程重大项目培育资金(708085)资助~~
关键词 多目标检测与跟踪 遮挡处理 贪心搜索 智能视频监控 Multiple object detection and tracking, occlusion handling, greedy searching, intelligent video surveillance
  • 相关文献

参考文献27

  • 1Senior A, Hampapur A, Tian Y L, Brown L, Pankanti S, Bolle R. Appearance models for occlusion handling. Image and Vision Computing, 2006, 24(11): 1233-1243.
  • 2Cucchiara R, Grana C, Tardini G, Vezzani R. Probabilistic people tracking for occlusion handling. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 132-135.
  • 3Nguyen H T, Smeulders A W M. Fast occluded object tracking by a robust appearance filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1099-1104.
  • 4Wu Y, Yu T, Hua G. Tracking appearances with occlusions. In: Proceedings of IEEE Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003. 789-795.
  • 5Siebel N T, Maybank S J. Fusion of multiple tracking algorithms for robust people tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 373-387.
  • 6Huang Y, Essa I. Tracking multiple objects through occlusions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 1051-1058.
  • 7Chang T H, Gong S G, Jong E. Tracking multiple people under occlusion using multiple cameras. In: Proceedings of British Machine Vision Conference. Bristol, UK: British Machine Vision Association, 2000. 1-10.
  • 8Hu W M, Hu M, Zhou X, Tan T N, Lou J G, Maybank S. Principal axis-based correspondence between multiple cameras for people tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 663-671.
  • 9Zhao T, Nevatia R. Tracking multiple humans in complex situations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1208-1221.
  • 10Cucchiara R, Grana C, Tardini G. Track-based and object- based occlusion for people tracking refinement in indoor surveillance. In: Proceedings of the 2nd International Workshop on Video Surveillance and Sensor Networks. New York, USA: ACM. 2004. 81-87.

同被引文献22

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部