期刊文献+

低NO_x自激振荡射流燃烧器 被引量:6

Low NO_x Self-excited Oscillating-jet Burners
下载PDF
导出
摘要 流体射入特定结构的突扩腔体会发生整体低频振荡,这类射流称为自激振荡射流。射流振荡对近场和远场的湍流混合过程都具有重要影响。自激振荡射流能增强宏观上的大尺度搅动,但同时却减弱了微观上的小尺度混合。以此为基础开发的自激振荡射流燃烧器能在不增加火焰长度的情况下增加火焰体积,显著提高火焰辐射换热,降低火焰温度,降低热力型氮氧化物(NOx)的生成。在工业水泥回转窑及其他窑炉的应用中,长期的实践证明,该燃烧器与以往的多喷嘴燃烧器相比,降低40%-60%的NOx排放,并降低了5%-10%的单位产量燃料消耗。该文综述了射流振荡对湍流混合及火焰特性的影响,亦对这种燃烧器的局限性做了分析讨论,最后给出利用白激振荡射流现象进一步发展工业燃烧器的建议。 A small flow ejecting into a relatively large specific chamber can produce large-scale low-frequency oscillations, this jet is termed as a self-excited oscillating jet. The self-excited oscillation imposes a profound influence on turbulent mixing process: i.e., it not only enhances large-scale engulfment or entrainment but also simultaneously decreases the molecular mixing rate. Previous combustion experiments reveal that the self-excited oscillating jet burners always produce relatively larger flames with more soot, thus increasing flame radiation, decreasing flame temperature and resulting in low NOx emissions. Many installations of these burners at cement kilns have consistently delivered a reduction of 40%,-60% of NOx emissions and also less fuel consumption by 5%-10%, relative to the conventional multi-jet burners. This paper reviewed the influence of jet oscillation on turbulent mixing and flame performance, then discussed the limitations of the burners, and finally gave suggestions to their further development.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第8期32-38,共7页 Proceedings of the CSEE
基金 国家863高技术基金项目(2007AA05Z312) 国家自然科学基金项目(10772006)~~
关键词 燃烧器 湍流混合 NOx 辐射换热 自激振荡射流 burner turbulent mixing NOx emissions radiation self-excited oscillation
  • 相关文献

参考文献58

  • 1Nathan G J, Hill S J, Luxton R E. An axisymmetric 'fluidic' nozzle to generate jet precession[J]. Journal of Fluid Mechanics, 1998, 370(1): 347-380.
  • 2Luxton R E, Nathan G J. Mixing of fluids: AU, 624528 [P]. 1988-01-08.
  • 3Manias C G, Balendra A S, Retallack D J. New combustion technology for lime production[J]. World Cement, 1996, 27(12): 34-39.
  • 4Manias C G, Nathan G J. The precessing jet gas burner-a low NOx burner providing process efficiency and product quality improvements [J]. World Cement, 1993, 4(3): 4-11.
  • 5Manias C G, Nathan G J. Low NOx clinker production[J]. World Cement, 1994, 25(5): 54-56.
  • 6Rapson D, Stokes B, Hill S J. Kiln flame shape optimization using a Gyro-Therm gas burner[J]. World Cement, 1995, 26(7): 2-5.
  • 7Videgar R. Gyro-therm technology solves burner problems[J]. World Cement, 1997, 28(11): 39-41.
  • 8Nathan G J, Mi J, Alwahabi Z T, et al. Impacts of a jet's exit flow pattern on mixing and combustion performance[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 496-538.
  • 9Zhou L X, Chen X L, Zhang J. Studies on the effect of swirl on NO formation in methane/air turbulent combustion[J]. Proceedings of the Combustion Institute, 2003, 29(2): 2235-2242.
  • 10Shi X F, Qian R Z, Shi H S, et al. Investigation of the optimization of slit width for a slitted bluff-body burner: pulverized coal ignition and flame stabilization[J]. Combustion Science and Technology, 1997, 124(I): 1-15.

二级参考文献35

  • 1Cavaliere, A., Ragucci, R., “Gaseous diffusion combustion: Simple structure and their interaction”, Prog. Energy Combust. Sci., 27 (5), 547-585 (2001).
  • 2Gutmark, E., Parr, T.E, Hanson-Parr, D.M., Schadow, K.C., "Closed-loop amplitude modulation control of reacting premixed turbulent jet", AIAA J., 29 (12), 2155-2162 (1991).
  • 3Streicher, E., Matin, O., Charon, O., Borders, H., "Oscillation combustion technology boosts furnace efficiency", Ind. Heating, 68 (2), 35-39 (2001).
  • 4Uhm, J.H., Acharya, S., "Control of combustion instability with a high-momentum air-jet", Combust. Flame, 139 (1/2), 106-125 (2004).
  • 5Ishizuka, S., Motodamari, T., Shimokur, D., "Rapidly mixed combustion in a tubular flame burner", Proc. Combust. Inst., 31 (1), 1085-1092 (2007).
  • 6Chan, S.M.S., Torii, S., Yano, T., "Enhancement of turbulent jet diffusion flame blowout limits by annular counter flow", Int. J. Energy. Rev., 25 (12), 1091-1105 (2001).
  • 7Suzuki, H., Kasagi, N., Suzuki, Y., "Active control of an axisymmetric jet with distributed electromagnetic flap actuators", Exp. Fluids., 36 (3), 498-509 (2004).
  • 8Kurimoto, N., Suzuki, Y., Kasagi, N., "Active control of lifted diffusion flames with arrayed micro actuators", Exp. Fluids., 39 (6),995-1008 (2005).
  • 9Santos, A., Costa, M., "Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames", Combust. Flame, 142 (1/2), 160-169 (2005).
  • 10Demare, D., Baillot, F., "Acoustic enhancement of combustion in lifted nonpremixed jet flames", Combust. Flame, 139 (44), 312-328 (2004).

共引文献8

同被引文献53

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部