期刊文献+

风电场输出功率年度预测中有效风速预测研究 被引量:30

Effective Wind Speed Forecasting in Annual Prediction of Output Power for Wind Farm
下载PDF
导出
摘要 风电场风电功率预测在风能利用中具有重要意义。利用历史年份的小时平均风速数据对下一年年度风速进行预测。对历史年份的小时平均风速数据以季度为单位进行小波分解,采用递推最小二乘法建立各分量的二元线性回归预测模型,将各分量预测模型等权求和集成为次年度对应季度的预测模型。对实测数据的仿真计算表明,提前一年的风速季度预测的平均绝对百分误差(mean absolute percentage,MAPE)为12.25%,提高了此类预测的精度。考虑具体风力发电机组的功率特性、机组效率和设备运行情况,可得次年度风电场输出功率值。 Wind power forecasting is very important to the utilization of wind energy. In order to forecast the yearly wind speed of the next year, the data of average wind speed per hour of the history is to be used in this paper. The wind speed can be decomposed into several different frequency bands based on wavelet decomposition, different recursive least square (RLS) models to forecast each band were built up, these forecasting results of high frequency bands and low frequency bands were combined to obtain the final forecasting results. The simulation experiment shows the average value of the mean absolute percentage error (MAPE) is 12.25% about wind speed forecasting and the prediction accuracy is improved considerably. Considering power characteristic of wind power generator, unit efficiency, operating conditions, the output power of the next year in wind farm can be obtained.
作者 王晓兰 李辉
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第8期117-122,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50967001)~~
关键词 风速 风电功率 预测 小波分解 递推最小二乘法 wind speed wind power forecasting wavelet decomposition recursive least square (RLS)
  • 相关文献

参考文献21

  • 1雷亚洲,王伟胜,印永华,戴慧珠.风电对电力系统运行的价值分析[J].电网技术,2002,26(5):10-14. 被引量:139
  • 2Fan Shu, Liao J R, Yokoyama R, et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 474-482.
  • 3Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 4杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 5陈树勇,戴慧珠,白晓民,周孝信.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(3):26-29. 被引量:233
  • 6Negnevitsky M, Potter C W. Innovative short-term wind generation prediction techniques[C]. 2006 PSCE Power Systems Conference and Exposition, Atlanta, USA, 2006.
  • 7吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 8Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy, 2000, 21(1): 23-35.
  • 9Wang X, Sideratos G, Hatziargyriou N, et al. Wind speed forecasting for power system operational planning[C]. The 8th International Conference on Probablitistic Methods Applied to Power System, Iowa, USA, 2004.
  • 10Ji Guorui, Han Pu, Zhai Yongjie. Wind speed forecasting based on support vector machine with forecasting error estimation[C]. The 6th International Conference on Machine Learning and Cybernetics, Dalian, China, 2007.

二级参考文献73

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 4肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 5World Wind Energy Association. Wind turbines generate more than 1% of the global electricity[EB/OL]. (2008-02-21)[2008- 03-20]. http: //www.wwindea.org.
  • 6Landberg L, Watson S J. Short-term prediction of local wind conditions[J]. Bounddary-Layer Meteorology, 1994, 70(1): 171-195.
  • 7Landberg L. Prediktor: an on-line prediction system[C]. Wind Power for the 21 st Century, EUWEC Special Topic Conference, Kassel, 2000.
  • 8Nielsen T S. Madsen H. WPPT: a tool for wind power prediction[C]. EWEA Special Topic Conference, Kassel, 2000.
  • 9Giebel G, Landberg L, Joensen Alfred K, et al. The zephyr-project: the next generation prediction systemiC]. Procedings of Wind Power for the 21st Century, Kassel, Germany, 2000.
  • 10Lange M, Focken U, Heinemann D. Previento-regional wind power prediction with risk control[C]. Proceedings of the World Wind Energy Conference, Berlin, 2002.

共引文献1005

同被引文献288

引证文献30

二级引证文献456

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部