期刊文献+

基于表面肌电控制的虚拟人机交互系统 被引量:10

Human-machine Interaction System Based on Surface EMG Signals
下载PDF
导出
摘要 实现了一种基于肌电信号手势识别的实时虚拟人机交互系统。系统采集受试者执行六类不同手势动作时的上肢肌肉表面肌电信号,对其进行模式识别,并将识别结果作为虚拟物体的控制信号,控制虚拟飞机执行三个自由度的飞行动作,从而实现人与虚拟环境的友好交互。对10位受试者进行的单用户和多用户控制测试实验表明,实现的虚拟人机交互系统可实现基于肌电信号的虚拟人机交互,且具有虚拟环境生动形象、控制准确率高等特点。 A real-time virtual human-machine interaction system was proposed based on the surface EMG-based gesture recognition technology. Surface EMG signals were collected from the upper limbs of the subject when they did six defined hand gestures. Then surface EMG pattern recognition algorithm was conducted on them and the results were used as input commands to control 3-DOF (degree of freedom) movements of the virtual plane in a virtual environment. Single-user and multi-user online test experiments were conducted on 10 subjects to examine the system's reliability. The experiment results show that this system performs well in the surface EMG-based gesture control of the virtual plane with high accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第3期651-655,共5页 Journal of System Simulation
基金 国家自然科学基金(60703069)
关键词 表面肌电信号 虚拟环境 人机交互 模式识别 surface EMG virtual environment human-machine interaction pattern recognition
  • 相关文献

参考文献4

二级参考文献27

  • 1李后强,向家俊.肌电图波形的分维表征及模拟初探[J].体育科学,1991,12(5):52-55. 被引量:5
  • 2胡天培.肌电特征发现与肌电康复研究[J].上海交通大学学报,1994,28(3):151-153. 被引量:9
  • 3李耀宇,郭凌菱,雷英杰.肌电信号的波幅直方图统计处理[J].生物医学工程学杂志,1995,12(3):237-240. 被引量:4
  • 4邓琛,张琴舜,翁羿浩.现代控制理论在假肢技术中的应用[J].上海交通大学学报,1996,30(8):96-99. 被引量:2
  • 5[1]Frederick P.Brooks.What's Real About Virtual Reality[J].IEEE Computer Graphics and Applications (S0272-1716),1999,19(6):16-27.
  • 6[2]J.M.Rehg,T.Kanade.Visual Tracking of High DOF Articulated Structures:An Application to Human Hand Tracking[C]//Proceedings of European Conference on Computer Vision,Stockholm,Sweden,1994.
  • 7[3]J.J.Kuch,T.S.Huang.Model-based Tracking of Self-occluding Articulated Objects[C]//Vision Based Hand Modeling and Tracking for Virtual Teleconferencing and Tele-collaboration,Cambridge,MA,1995.
  • 8[4]Y.Sato,M.Saito,H.Koike.Real-time Input of 3D Pose and Gestures of a User's Hand and Its Applications for HCI[C]//Proceedings of the IEEE Virtual Reality,Yokohama,Japan,2001.
  • 9[5]K.M.Hornik,M.Stinchcombe,H.White.Multilayer feedforward networks are universal approximators[J].Neural Networks (S0893-6080),1989,2(5):359-366.
  • 10Al-Assaf Y,Al-Nashash H.Myoelectric signal segmentation and classification using wavelets based neural networks[C] // Proceedings of 23rd Annual International Conference of the IEEE.IEEE Press,2001,2:1 820-1 823.

共引文献73

同被引文献69

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部