期刊文献+

基于区域灰度统计信号处理的图像融合方法 被引量:4

Region-based statistical signal processing scheme for image fusion
下载PDF
导出
摘要 针对多源图像融合问题,提出了一种在多分辨率框架下基于区域内灰度特征统计信号的融合算法.利用图像灰度特征的区域生长法对源图像进行区域分割,并以裂缝边缘作为特征区域的闭合边界,对源图像与分割结果的区域映射图作多分辨率变换.在图像低频部分,以联合区域映射图为指导,在区域内建立信号与噪声的高斯混合分布模型,利用期望极大化(EM,Expectation Maximization)算法迭代估计噪声模型分布参数,获得低频融合结果;在图像高频部分,根据系数在区域映射图上的位置差异分别采用窗口系数加权平均法和系数绝对值选大法进行融合,将低频和高频融合结果反变换得到最终融合图像.融合结果表明:该方法是可行和高效的,且比其他图像融合方法具有更好的性能. A new image fusion scheme based on region statistical signal processing was proposed. The region growing technique using gray-level clustering was employed to segment the source images into different regions whose borderline represented with crack edge. The registered source images and their segmented mapping were decomposed into a multi-resolution representation with both low-frequency coarse information and high-frequency detail information respectively. The expectation maximization algorithm modeled with noise statistic distribution was used to fuse the low-frequency coarse information of the registered images, while the match and salience measures were applied to fuse the high-frequency detail information of the registered images. The final fused image was obtained by taking the inverse transform of the composite multi-resolution representations information. Fusion experiments on real world images indicate that the proposed method is effective and efficient, which achieves better performance than the most generic fusion method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第2期140-144,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家973计划资助项目(2009CB72400502) 国家自然科学基金资助项目(60974108) 航天支撑技术基金资助项目
关键词 图像融合 区域生长 裂缝边缘 期望极大化 多分辨率框架 image fusion region growing crack edge expectation maximization multi-resolution framework
  • 相关文献

参考文献8

  • 1杨晓慧,金海燕,焦李成.基于DT-CWT的红外与可见光图像自适应融合[J].红外与毫米波学报,2007,26(6):419-424. 被引量:19
  • 2李小娟,赵巍.一种基于多尺度边缘的图像融合算法[J].北京航空航天大学学报,2007,33(2):229-232. 被引量:4
  • 3曹治国,王文武.应用统计信号处理和模糊数学的图像融合算法[J].光电工程,2005,32(5):73-75. 被引量:3
  • 4Lewis J J, Nikolov S G, Canagarajah C N, et al. Uni-modal versus joint segmentation for region-based image fusion [ C ]// Willett P K. Ninth International Conference on Information Fusion ( Fusion 2006). New York:Institute of Electrical and Electronics Engineers,2006 (6) : 1 - 8.
  • 5Dempster A P, Larid N, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[ J]. Journal of the Royal Statistical Society, Series B (Methodological) , 1977,1 ( 39 ) : 1 - 38.
  • 6Yang Jinzhong,Blum R S. A region-based image fusion method using the expectation-maximization algorithm [ C ]//Andrew Fitzgibbon. IEEE Conference on Computer Vision and Pattern Recognition ( CVPR 2006 ). Los Alamitos, Calif. : IEEE Computer Society,2006(3) :468 - 473.
  • 7Butt P J, Kolczynski R J. Enhanced image capture through fusion [ C]// IEEE Computer Society. Fourth International Conference On Computer Vision, Los Alamitos, Calif. :IEEE Computer Society,1993(5) :173 - 182.
  • 8葛雯,李丽娜,赵锐.基于小波提升机制的快速图像融合算法[J].科学技术与工程,2008,8(8):2249-2252. 被引量:3

二级参考文献25

  • 1周礼,王章野,金剑秋,彭群生.基于HVS的小波图像融合新算法[J].中国图象图形学报(A辑),2004,9(9):1088-1094. 被引量:14
  • 2邓磊,陈云浩,李京.一种基于小波变换的可调节遥感影像融合方法[J].红外与毫米波学报,2005,24(1):34-38. 被引量:31
  • 3李玲玲,王洪群,娄联堂,丁明跃.平移不变性图像融合及在打击效果评估中的应用[J].华中科技大学学报(自然科学版),2006,34(7):67-70. 被引量:4
  • 4[1]Yang Xuejun,Wang Panfeng,Du Yuefei,et al.A data-distributed parallel algorithm for wavelet-based fusion of remote sensing images.Frontiers of Computer Science in China,2007;1(2):231-240
  • 5[2]Zhang Yun.Undersding image fusion.Photo-grammetry Engineering & Remote Sensing,2004;70(6):657-661
  • 6[3]Ranehin T,Aiazzi B,Alparone L,et al.Image fusion-the ARSIS concept and some successful implementation schemes.ISPRS Journal of Photo-grammetry & Remote Sensing,2003;58(5):4-18
  • 7[4]Sweldens W.The lifing scheme:a construction of second generation wavelets.SIAM Journal Mathematical Analysis,1997;29(2):511-546
  • 8ZHANG Zhong, BLUM R S. A Categorization of Multiscale-Decomposition-Based Image Fusion Schemes with a Performance Study for a Digital Camera Application[J]. Proceeding of the IEEE, 1999, 87(8): 1315-1326.
  • 9BURT P J, ADELSON E. The Laplacian pyramid as a compact image code[J], IEEE Trans. Communications, 1983, 31(4): 532-540.
  • 10ROCKINGER O, FECHNER T. Pixel-level image fusion:The case of image sequences[J]. SPIE, 1998, 3374: 378-388.

共引文献25

同被引文献22

  • 1王林艳,陶玲,王惠南.CT与MRI图像融合的评价方法研究[J].生物医学工程研究,2006,25(4):247-250. 被引量:13
  • 2BENNETT E P, MASON J L, MCMILLAN L. Multispectral bilateralvideos fusion [J]. IEEE Trans on Image Processing,2007,16(5):1185-1194.
  • 3SHAH P, MERCHANT S N, DESAI U B. Fusion of surveillance ima-ges in infrared and visible band using curvelet, wavelet and waveletpacket transform [J]. International Journal of Wavelet Multiresolu-tion and Information Processing,2010,8(2) :271-292.
  • 4PAIARES G,De la CRUZ J M. Wavelet-based image fusion tutorial[J]. Pattern Recognition,2004,37(9) : 1855-1872.
  • 5DIXON T, LI J, NOYES, et al. Scan path assessment of visible andinfrared side-by-side and fused video displays [ C] //Proc of the 10thInternational Conference on Information Fusion. 2007:1-8.
  • 6MASINI A, BRANCHILLA F, DIANI M, et al. Sight enhancementthrough video fusion in a surveillance system [ C] //Proc of the 14thIEEE International Conference on Image Analysis and Processing.2007:554-559.
  • 7CHEN S, ZHU W, LEUNG H. Thermal-visual video fusion usingprobabilistic graphical model for human tracking [ C]//Proc of IEEEInternational Symposium on Circuits and Systems. 2007 : 1926-1929.
  • 8WELSH T, ASHIKHMIN M, MUELLER K. Transferring color togrey-scale images[ J]. ACM Trans on Graphics,2002 ,21 (3) :277-280.
  • 9TOET A. Natural color mapping for multi band night-vision imagery[J]. Information Fusion,2003,4(3) : 155-166.
  • 10LI Shu-tao, YANG Bin. Multifocus image fusion by combining curve-let and wavelet transform[ J]. Pattern Recognition Letter,2008,29(9):1295-1301.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部