期刊文献+

基于多目标粒子群算法的切削用量多决策优化研究 被引量:13

Multi-Criteria Decision Optimization of Cutting Parameters Based on Multi-Objective Particle Swarm
下载PDF
导出
摘要 传统多目标优化问题通常是以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。为了更合理地确定切削用量,采用多目标粒子群算法首先求得问题的pareto最优前沿,经过后期多准则决策得到满足不同要求下的最优方案。采用这种先寻优后决策的方法,能有效弱化先验知识不足的影响,较传统多目标优化方法更为实用有效。并经与多目标遗传算法比较,多目标粒子群算法具有更优良的性能。 Traditional multi-objective optimization,through simply convening to a single goal, often fails to reflect the more complex relationship between goals,and decision-make effectively at any time on demand. For selecting optimum cutting parameters,MOPSO(Multi-Objective Particle Swarm)is applied to obtain the pareto optimum front,and then the best answer is got according to multi-criteria decision. The method, making decision after searching optimum solutions, is more applicable and effective and can weak designer' s transcendental information deficiency problem. Compared with M OGA (Multi-Objective Genetic Algorithm),MOPSO showed better performance.
作者 朱小平 王涛
出处 《组合机床与自动化加工技术》 北大核心 2010年第3期27-29,33,共4页 Modular Machine Tool & Automatic Manufacturing Technique
关键词 切削用量 多目标粒子群算法 多准则决策 优化 cutting parameters Multi-Objective Particle Swarm multi- criteria decision optimization
  • 相关文献

参考文献7

  • 1李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 2武美萍,翟建军,廖文和.数控加工切削参数优化研究[J].中国机械工程,2004,15(3):235-237. 被引量:61
  • 3刘海江,黄炜.基于粒子群算法的数控加工切削参数优化[J].同济大学学报(自然科学版),2008,36(6):803-806. 被引量:36
  • 4R Eberhart, J Kennedy. A new optimizer using particle swarm theory. In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science. Piscataway, N J: IEEE Service Center, 1995:39 - 43.
  • 5J Kennedy, R Eberhart. Particle swarm optimization. IEEE Int'l conf on Neutral Networks,Perth,Australia, 1995.
  • 6Margarita Reyes-Sierra, Carlos A. Coello Coello. Muhi-Objective Particle Swarm Optimizers : A Survey of the State-of-the-Art [ J ]. International Journal of Computational Intelligence Research, 2006,2 ( 3 ) : 287 - 308.
  • 7艾兴,肖诗纲.切削用量简明手册[M].北京:机械工业出版社,2002.

二级参考文献15

  • 1武美萍,廖文和.INTERNET-BASED MACHINING PARAMETER OPTIMIZATION AND MANAGEMENT SYSTEM FOR HIGH-SPEED MACHINING[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(1):42-46. 被引量:5
  • 2申丽国,韩至骏,张昆.应用生物遗传算法规划切削参数[J].中国机械工程,1994,5(6):34-35. 被引量:9
  • 3沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 4KALYANMOY D. Optimization for engineering design., algorithms and examples [M]. Upper Saddle River, N.J. , USA Prentice Hall, 1995.
  • 5SARAVANAN R, ASOKAN P, SACHITHANANDAM M.Comparative analysis of conventional and non-conventional optimisation techniques for CNC turning process [J]. International Journal of Advanced Manufacturing Technology, 2001,17(7):471-476.
  • 6BUDAK E, ALTINTAS Y, ARMAREGO E J A. Prediction of milling force coefficients from orthogonal cutting data [J].Journal of Manufacturing Science and Engineering, 1996, 118(2): 216-224.
  • 7SARAVANAN R, ASOKAN P, VIJAYAKUMAN K. Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA)and simulated annealing (SA)[J]. International Journal of Advanced Manufacturing Technology, 2003, 21 (1) : 1 - 9.
  • 8GELBERT W W. Economics of machining, machining theory and practice [M]. Cleveland, Ohio, USA: America Society of Metals, 1950. 465-485.
  • 9艾兴,肖诗纲.切削用量简明手册[M].北京:机械工业出版社,2002.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[C] ffProc IEEE Int Conf on Neural Networks. Perth: [ s. n. ]. 1995: 1942- 1948.

共引文献110

同被引文献85

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部