期刊文献+

改进C-V方法实现目标物体内部第三相区域分割

Three-phase image region segmentation based on the improved V-C model
下载PDF
导出
摘要 针对Chan-Vese水平集方法进行全域演化实现多相目标物体收敛时计算量大、演化速度极慢,而采用初始区域内进行轮廓曲线演化时又不能实现目标内部第三相区域的分割,提出二轮递进演化和演化背景灰度值转化的改进Chan-Vese方法实现目标内部第三相区域分割。改进方法能够对Chan-Vese方法演化多相拓扑不成功的情况实现目标内部第三相区域的检测。实验结果表明,改进的方法能快速稳定实现目标物体内部第三相区域分割。 To improve the use of the Chan-Vese method in the segmentation of the three-phase and to reduce its computational complexity, an improved Chan-Vese method is used to realize infrared image segmentation. The improved Chan-Vese method uses progressive processing and the reversion of gray value to achieve Chan-Vese multi-phase object segmentation. The improved Chan-Vese method can realize the three-phase infrared image segmentation. The experiment result demonstrated the efficiency and effectiveness of the improved method.
出处 《应用光学》 CAS CSCD 北大核心 2010年第2期247-251,共5页 Journal of Applied Optics
基金 广东省科技厅工业攻关计划项目(2007A010100012)
关键词 Chan—Vese方法 红外图像 图像分割 Chan-Vese method infrared image image segmentation
  • 相关文献

参考文献6

  • 1OSHER S, SETHIAN J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [ J ]. Journal of Computational Physics, 1988,79 : 12-49.
  • 2MUMFORD D, SHAH J. Optimal approximation by piecewise smooth functions and associated variational problems[J].Communication on Pure and Applied Mathematics, 1989,42 (5) :577-685.
  • 3CHANT F, VESE L A. A level set algorithm for minimizing the Munford-Shah functional in image processing[C]. Canada :Vancouver, 2001.
  • 4杨新,黄顺吉.基于偏微分方程的多区域SAR图像分割方法研究[J].电波科学学报,2008,23(3):525-529. 被引量:3
  • 5李艳灵,李刚.基于改进模糊C均值聚类的图像分割算法[J].信阳师范学院学报(自然科学版),2008,21(3):451-454. 被引量:1
  • 6LI C, XU C, GUI C, et al. Level set evolution without reinitialization : a new variational formulation Conference Recognition, Computer Society Vision and Pattern 2005,1(6):430-436.

二级参考文献18

  • 1陈曦,张红,王超.基于AOS非线性扩散的SAR图像去噪研究[J].电波科学学报,2004,19(4):405-408. 被引量:2
  • 2徐戈,黄培荣,孙洪.一种基于图像分布的SAR图像边缘检测方法[J].电波科学学报,2005,20(2):160-163. 被引量:3
  • 3A C Bovik. On Detecting Edge in Speckle Imagery[J]. IEEE Trans. on Acoustic Speech and Signal Processing, 1988, 36(10): 1618-1627.
  • 4S Osher and N Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics [M]. New York: Springer, 2003.
  • 5I Ayed, et al.. Multiregion level-set partitioning of synthetic aperture radar images[J]. IEEE Trans. on Pattern Analysis Machine Intelligence, 2005, 27 (5): 793-800.
  • 6D Mumford and J Shah. Boundary detection by minimizing functionals[A]. Proceedings of IEEE Coputer Society Conf. Computer Vision and Pattern Recognition[C]. New Jersey:IEEE,1985, 22-26.
  • 7V Caselles, et al.. A geometric model for active contours in image processing[J]. Numer. Math. , 1993, 66(1):1-31.
  • 8S Zhu and A Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell. , 1996, 18(9): 884-900.
  • 9S Geman and D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J]. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6(11) : 721-741.
  • 10L Vese and T Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. Int. J. Comput. Vis. 2002, 50(3): 271-293.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部