期刊文献+

一类带非线性源的拟线性抛物方程解的熄灭问题

Extinction for a Quasi-Linear Parabolic Equation With Nonlinear Source
下载PDF
导出
摘要 研究了形如ut=Δpu+λ|u|q-2u的拟线性抛物方程在RN(N≥2)中有界空间上的解的熄灭问题,利用上下解方法得到两类在有限时间内解熄灭的结果. In this paper, we deal with the extinction of solution of the initial boundary value problem of quasilinear para- bolic equation ut=△pu+λ|u|q-2u in a bounded domain of RN with N≥2. Using upper and lower solution method, we get two results of the extinction of the solution.
作者 徐兵 曹玉升
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期22-27,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 江苏省教育厅自然科学基金(08KJB110005)
关键词 熄灭 拟线性抛物方程 上下解方法 非线性源 extinction, quasi-linear parabolic equation, upper and lower solution method, nonlinear source
  • 相关文献

参考文献19

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics[ M ]. New York: McGraw-Hill, 1974.
  • 2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law[ J ]. Magnit. Gidrodinamika, 1971, 2: 50-58.
  • 3Kalashnikov A S. On a nonlinear equation appearing in the theory of non-stationary filtration[ J]. Trudy Sem Petrovsk, 1978, 5 : 60-68.
  • 4Esteban J R, Vazquez J L. On the equation of turbulent fihration in one-dimensional porous media [ J ]. Nonlinear Anal,1982, 10:1 303-1 325.
  • 5Garcia-Huidobro M, Manasevich R, Schmitt K. Positive radial solutions of quasilinear elliptic partial differential equations in a ball[J]. Nonlinear Anal, 1999, 35(2) : 175-190.
  • 6Guo Z M, Webb J R L. Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large [ J ]. Proc Roy Soc, 1994, 124(A): 189-198.
  • 7Hai D D, Schmitt K. On radial solutions of quasilinear boundary value problems [ J ]. Birkhauser Basel, 1999, 35: 349-361.
  • 8Guo Z M. Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic equations [ J ]. Appl Anal, 1992, 47: 173-190.
  • 9Kalashnikov A S. The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption [J]. USSR Comp Math Math Phys, 1974, 14: 70-85.
  • 10Gu Y G. Necessary and sufficient conditions of extinction of solution on parabolic equations[J]. Acta Math Sinica, 1994, 37 : 73-79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部