期刊文献+

基于核密度估计的图像自动标注方法 被引量:2

Image Automatic Annotation Method Based on Kernel Density Estimation
下载PDF
导出
摘要 提出一种基于概率模型的图像自动语义标注方法,将图片自动标注看作一个多类分类问题,通过无参数的核密度估计,实现用含有共同标注词的图片组估计视觉特征和相应标注词之间关系的机制。选取表达能力较好的基于CPAM的视觉特征,无须对图像进行语义分割处理,有效提高核密度估计的效率。在基准数据集上进行实验,结果表明,该模型能够获得比当前其他相关方法更好的标注性能。 A novel method for automatic image annotation is presented. The new model is based on a probabilistic formulation which poses annotation as a multi-class classification problem. It tries to estimate the conrrelation between visual features and semantic labels by using the groups of images that share the same associated labels through kernel density estimation. In addition, CPAM-based visual features are introduced to improve the efficiency of kernel density estimation without requiring prior image semantic segmentation. Experiments on the benchmark data set show this model achieves higher accuracy than the previously published results.
作者 周宁 薛向阳
出处 《计算机工程》 CAS CSCD 北大核心 2010年第6期198-200,共3页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2007BAH09B03) 上海市科委基金资助项目(08dz1500109)
关键词 图像自动标注 多类分类器 核密度估计 image automatic annotation multi-class classifier kernel density estimation
  • 相关文献

参考文献5

  • 1Duygulu E Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary[C]//Proc. of European Conference on Computer Vision. [S. l.]: IEEE Press, 2002.
  • 2Jeon J. Automatic Image Annotation and Retrieval Using Cross-media Relevance Models[C]//Proc. of the Int'l ACM SIGIR'03. [S. l.]: ACM Press, 2003.
  • 3Lavrenko V. A Model for Learning the Semantics of Pictures[C]// Proc. of Int'l Conf. on Advances in Neutral Information Processing Systems. [S. l.]: IEEE Press, 2003.
  • 4Manmatha R. Multiple Bernoulli Relevance Models for Image and Video Annotation[C]//Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 2004.
  • 5Qiu Guoping. Indexing Chromatic and Achromatic Patterns for Content-based Colour Image Retrieval[J]. Pattern Recognition, 2002, 35(8): 1675-1686.

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部