期刊文献+

基于改进LS-SVM的来波方位估计 被引量:1

Incoming Wave Direction Estimation Based on Improved LS-SVM
下载PDF
导出
摘要 提取已知方位信号的协方差矩阵的上三角部分作为样本特征,构建方位估计模型。针对最小二乘支持向量机最优参数难以选定的问题,采用实值编码的启发式遗传算法,以模型的来波方位估计性能为目标,实现基于高斯核函数的SVM参数优化,提高了来波方位估计精度。实验结果表明,该方法估计精度较高、实时性好,在无线电测向领域具有广阔应用前景。 This paper extracts the upper triangular half of the covariance matrix of knowing direction signals to construct the direction estimation model. Aiming at the problem that the best parameter of Least Squares-Support Vector Machine(LS-SVM) is hard to select, it uses real-coded heuristic genetic algorithm. Aiming at the approximate performance estimation of model incoming wave direction, it optimizes the parameters of LS-SVM with Gauss kernel function. The estimation precision is improved. Experimental results show that this method has high precision, high real-time performance and a broad application future in wireless direction finding field.
作者 李鹏飞 张旻
出处 《计算机工程》 CAS CSCD 北大核心 2010年第6期204-205,209,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60972161) 安徽省重点实验室基金资助项目
关键词 最小二乘支持向量机 遗传算法 来波方位 估计 Least Squares-Support Vector Machine(LS-SVM) genetic algorithm incoming wave direction estimation
  • 相关文献

参考文献4

  • 1Gun Wenqiang, Qiu Tianshuang, Tang Hong, et al. Performance of RBF Neural Networks for Array Processing in Impulsive Noise Environment[J]. Digital Signal Processing, 2008, 18(2): 168-178.
  • 2Vigneshwaran S, Sundararajan N, Saratchandran E Direction of Arrival(DOA) Estimation Under Array Sensor Failures Using a Minimal Resource Allocation Neural Network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 334-343.
  • 3彭兵,周建中,安学利,向秀桥,罗志猛.支持向量的信息冗余和SVM改进方法[J].计算机工程,2008,34(4):48-50. 被引量:5
  • 4岑涌,钟萍,罗林开.基于GA-SVM的企业财务困境预测[J].计算机工程,2008,34(7):223-225. 被引量:14

二级参考文献12

  • 1Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Trans. on Neural Networks, 1999. 10(5): 988-999.
  • 2Seeger M. Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers[M]. [S. 1.]: MIT Press, 2000: 603-609.
  • 3Scholkopf B, Simard P, Smola A, et al. Prior Knowledge in Support Vector Kernels[M]. [S. 1.]: MIT Press. 1998.
  • 4Amari S, Wu S. Improving Support Vector Machine Classifiers by Modifying Kernel Function[J]. Journal of Neural Networks, 1999, (12)6: 783-789.
  • 5Wu Si. Conformal Transformation of Kernel Functions: A Datadependent Way to Improve Support Vector Machine Classifiers[J]. Neural Processing Letters, 2002, 15(2): 59-67.
  • 6Shin K S, Lee T S, Kim H J. An Application of Support Vector Machines in Bankruptcy Prediction Model[J]. Expert Systems with Applications, 2005, 28(1): 127-135.
  • 7Holger K Olivier C, Bernhard S. Feature Selection for Support Vector Machines by Means of Genetic Algorithms[EB/OL]. (2003-03-30). http://ieeexplore.ieee.org/ie15/8840/27974/01250182. pdf.
  • 8Vapnik V, Chapelle O. Bounds on Error Expectation for Support Vector Machines[J]. Neural Computation, 2000, 12(9): 2013-2016.
  • 9Altman E, Haldeman R, Narayanan R Zeta Analysis: A New Model to Identify Bankruptcy Risk of Corporations[J]. Journal of Banking & Finance, 1977, 1(1): 29-54.
  • 10Wilson R L, Ramesh S. Bankruptcy Prediction Using Neural Networks[J]. Decision Support Systems, 1994, 11(5): 545-557.

共引文献17

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部