期刊文献+

入侵检测中的快速特征选择方法 被引量:23

Fast Method for Feature Selection in Intrusion Detection
下载PDF
导出
摘要 进行入侵检测前必须分析输入数据的特征。使用粒子群优化算法对特征进行选择,消除冗余属性、降低问题规模、提高数据分类质量、加快数据处理速度。用二进制字符串序列表示粒子位置,阐述位置和速度的更新策略以及适应度函数的选择。在KDDCUP1999数据集上进行实验,结果表明与遗传进化算法相比,该方法可以更有效地精简特征,提高分类质量。 It is necessary to analyze feature of input data before intrusion detection. This paper uses Particle Swarm Optimization(PSO) algorithm to select feature, eliminate the redundancy property, reduce the problem size, improve the quality of data classification and speed up the process. The position of the particle is expressed in a binary string. The update strategies of the position, velocity and the selection of fitness function are illustrated. The experiments with KDD CUP1999 and comparative results with Genetic Algorithm(GA) are described. It shows that the method is more efficient for feature selection and classification quality improvement.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第6期262-264,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2006AA04A123) 重庆市自然科学基金资助项目(2008BB2182 2008BB0173) 重庆大学青年骨干教师创新能力培育基金资助项目(CDCX021)
关键词 粒子群优化算法 特征选择 入侵检测 最优化 Particle Swarm Optimization(PSO) algorithm feature selection intrusion detection optimization
  • 相关文献

参考文献5

  • 1Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 2Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 3Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.
  • 4丁蕊,董红斌,冯宪彬.用于分类问题的粒子群优化遗传算法[J].计算机工程,2009,35(17):201-203. 被引量:9
  • 5崔自峰,吉小华.基于线性判别分析的特征选择[J].计算机应用,2009,29(10):2781-2785. 被引量:8

二级参考文献14

  • 1段晓东,王存睿,王楠楠,刘向东,石丽.一种基于粒子群算法的分类器设计[J].计算机工程,2005,31(20):107-109. 被引量:13
  • 2DUDA R O, HART P E, STORK D G. Pattern classification[ M] 2nd ed. San Francisco: WILEY, 2000.
  • 3KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[ C]// Proceedings of Ninth National Conference on Artificial Intelligence. Cambridge: AAAI, 1992:129 - 134.
  • 4BURGES C J C. Geometric methods for feature extraction and dimensional reduction: A guided tour, MSR-TR-2004-55 [ R/OL]. [2009 -04 -01]. http://www. kernel-machines. org/publications/ Burges04.
  • 5LEWIS D D. Feature selection and feature extraction for text categorization[ C]// Proceedings of the Speech and Natural Language Workshop. Morristown: Association for Computational Linguistics, 1992:212-217.
  • 6YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//ICML-1997: 14th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1997:412 -420.
  • 7HOWLAND P, PARK H. Generalizing discriminant analysis using the generalized singular value decomposition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 995 - 1006.
  • 8MARTINEZ A M, KAK A C. PCA versus LDA[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 23 (2) : 228 - 233.
  • 9YE J P, JANARDAN R, PARK C H, et al. A new optimization criterion for generalized discriminant analysis on undersampled problems[ C]// Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2003: 419.
  • 10NEWMAN D J, HETTICH S, BLAKE C L, et al. UCI repository of machine learning databases[ EB/OL]. [ 2009 - 04 - 01 ]. http:// www. ics. uci. edu/- mlearn/MLRepository.html.

共引文献15

同被引文献157

引证文献23

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部