期刊文献+

基于粒子群优化算法的最大类间方差多阈值图像分割 被引量:10

Multilevel threshold method for image segmentation based on particle swarm optimization and maximal variance
原文传递
导出
摘要 最大类间方差法是图像分割中一种常用的阈值分割方法,对于单阈值分割具有显著的效果,但是对于多阈值分割,计算复杂度大、耗时较多。本文将粒子群优化算法与最大类间方差法结合,提出了一种新的图像分割方法,该方法利用粒子群优化算法的寻优高效性,并由灰度图像的最大类间方差值作为适应值,搜索最优分割阈值,实现图像的多阈值分割。实验结果显示,新方法大大缩短了寻找最优阈值的时间,降低了运算复杂度,提高了图像分割速度,说明基于粒子群优化算法的图像分割算法是可行的、有效的。 The maximal variance method is one commonly used method in image segmentation field. It has the remarkable effect for single threshold, but for multilevel thresholds, it has the disadvantage of more complexity and time-consuming. To simplify the com- plexity of maximal variance multilevel threshold method for image segmentation, a novel algorithm based on particle swarm optimization was presented in this paper. Taking the advantage of robustness, adaptability and efficiency of particle swarm optimization and taking the maximal variance of gray image as the fitness, the algorithm could obtain the optimal thresholds. The experiments showed that the algorithm presented in this paper could find better solutions with much little complexity and was feasible and effective.
出处 《测绘科学》 CSCD 北大核心 2010年第2期88-89,122,共3页 Science of Surveying and Mapping
关键词 粒子群优化算法 最大类间方差法 多阈值 图像分割 particle swarm optimization maximal variance muhilevel threshold image segmentation
  • 相关文献

参考文献8

二级参考文献44

  • 1吴薇.基于最大模糊熵原理的多阈值图像分割新算法[J].系统工程与电子技术,2005,27(2):357-360. 被引量:20
  • 2王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196. 被引量:40
  • 3[1]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 4[2]Bhanu B,Lee S,Ming J.Alaptive Image Segmentation Using a Genetic Algorithm[J].IEEE Trans.on System,Man,and Cybernetics,1995,5(12):1543-1565.
  • 5[3]Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J.Asssoc.Comput.Mach.,1962,9:259-267.
  • 6[4]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171-190.
  • 7[5]Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 8[6]Tsai W H.Moment-Preserving Thresholding:A New Approach[J].Computer Vision,Graphics,and Image Processing,1985,29:377-393.
  • 9[7]Kittler J,Illingworth J.Minimum Error Thresholding[J].Pattern Recognition,1986,19:41-47.
  • 10[8]Cho S,Haralick R,Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J].Pattern Recognition,1989,22:609-617.

共引文献371

同被引文献99

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部