期刊文献+

相关法自适应滤波在动态行程时间预测中的应用研究 被引量:2

The feasibility analysis of the relevant adaptive filtering in the dynamic travel time prediction
原文传递
导出
摘要 动态行程时间预测是智能交通系统研究的重要内容。为避免卡尔曼滤波中白噪声方差对行程时间预测结果的影响,本文把相关法自适应滤波理论引入到动态行程时间预测中,提出了应用浮动车GPS数据建立相关法自适应滤波模型的方法。预测结果表明,相关法自适应滤波模型的涉动性小,精度满足要求。 Dynamic traffic prediction is important in intelligent transportation system. To avoid the influence of system noise and observation noise, the theory of relevant adaptive filtering was introduced into the dynamic traffic prediction. Therefore the method of building the model was put forward by the float GPS data. The predicting result showed that the fluctuation of relevant adaptive filtering was small and its precision could meet the applied requirement.
出处 《测绘科学》 CSCD 北大核心 2010年第2期158-160,共3页 Science of Surveying and Mapping
基金 高等学校博士学科点专项科研基金(20050417001) 辽宁省教育厅一般项目(2008293) 辽宁工程技术大学地理空间信息技术实验室开放基金(2006011) 辽宁工程技术大学优秀青年基金(07A116)
关键词 相关法 自适应滤波 GPS数据 动态行程时间预测 the relevant method the adaptive filtering GPS data dynamic travel time prediction
  • 相关文献

参考文献7

  • 1Quiroga Cesar A. An integrated GPS-GIS methodology for performing travel time studies Dissertation Abstracts International [J] .2002, 58 (9), Section B: 4990.
  • 2Ohmori N, Muromachi Y, Harata N, and Ohta K. Analysis of day-to-clay variations of travel time using GPS and GIS [ C ] //Traffic and Transportation Studies Proeedding of ICTTS 2002. 2002, No. 2 : 1306-1313.
  • 3Jiann-Shiou Yang. Travel time prediction using the GPS test vehicle and kalman filtering techniques [ C ] //2005 Armerican Control Conference, 2005438: 2128-2133.
  • 4张存保,杨晓光,严新平.基于浮动车的交通信息采集系统研究[J].交通与计算机,2006,24(5):31-34. 被引量:41
  • 5B S Kerner, C Demir, R G Herrtwich, S L Klenov, H Rehborn, M. Aleksic, A Haug. Traffic state detection with floating car data in road networks [ C ] //Proceedings of the 8th international IEEE conference on Intelligent Transp-ortation Systems, 2005-09 : 700-705.
  • 6Young-Ji Byon.GPS-GIS integrated system for travel time surveys [ D ] . The Civil Enginerring University of Toronto, 2005.
  • 7A Torday, A G Dumont. Parameters influencing probe vehicle based travel time estimation accuracy [ C ] //The 4th Swiss Transport Research Conference, 2004.

二级参考文献6

共引文献40

同被引文献19

  • 1王玲玲,富立.模糊推理在捷联航姿系统中的应用[J].中国惯性技术学报,2006,14(6):45-47. 被引量:5
  • 2姚宝珍,杨成永,于滨.动态公交车辆运行时间预测模型[J].系统工程学报,2010,25(3):365-370. 被引量:10
  • 3温惠英,徐建闽,傅惠.基于灰色关联分析的路段行程时间卡尔曼滤波预测算法[J].华南理工大学学报(自然科学版),2006,34(9):66-69. 被引量:23
  • 4张圆,郭晨,谢春思,梁勇.基于模糊神经网络融合的目标自适应跟踪算法[J].大连海事大学学报,2007,33(2):120-123. 被引量:1
  • 5SUN Di hua, LUOHong, FU I.i-ping, et al. Predicting bus arrival time on the basis of global positioning system data[J].Transportation Research Record, 2007(2034): 62- 72.
  • 6PADMANABAN R P S, DIVAKAR K, VANAJAKSHI L, et al.Development of a real time bus arrival prediction sys ten, for lndian traffic conditions[J]. Intelligent Transport System, 2010. 4(3): 189 200.
  • 7YANG J S. A study of travel time modeling via time series analysis[C] // 1EEE. Proceedings of 2005 IEEE Control Applications Conference. Piseataway: IEEE, 2005:855 -860.
  • 8CHEN De wang, ZHANG Kun, LIAO Tao. Practical travel time prediction algorithms based on neural network and data fusion for urban expressway[C]//1EEE. 2010 Sixth International Conference of Natural Computation. Piscataway: IEEE, 2010:1754-1758.
  • 9LEE Y. Freeway travel time forecast using artifical neural networks with cluster method[C]//IEEE. 12th lnternalional Conference of Information Fusion. Piscataway: 1EEE, 2009: 1331- 1338.
  • 10CHEN Peng. YAN Xin-ping, LI Xu-hong. Bus travel time prediction based on relevance vector machine [C] //IEEE. 9009 International Conference on Information Engineering and Computer Science. Piscataway: IEEE, 2009:1- 4.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部