期刊文献+

基于PCA-SVMR快速测定复方氯丙那林和对乙酰氨基酚

Fast determination of compound clorprenaline and compound paracetamol based on PCA-SVMR
下载PDF
导出
摘要 基于主成分分析-支持向量机回归(PCA-SVMR)方法,利用近红外光谱技术研究了复方氯丙那林和复方对乙酰氨基酚两种模型制剂有效组分的快速同时测定,建立了它们的多元校正模型,并以传统的稳健方法偏最小二乘回归(PLSR)为基础考察了PCA-SVMR方法对于小样本药物体系的拟合能力、预测能力和模型稳定性。研究表明,PLSR的预测能力必须以强拟合能力为前提,PCA-SVMR则没有这样的要求,使前者对校正样本的依赖性远强于后者,从而在小样本药物体系中前者的稳定性大大弱于后者,该两种药物制剂的PCA-SVMR多元校正模型的测定准确度总体上优于PLSR。 Based on the method of principal component analysis-support vector machine regression (PCA-SVMR), the fast and simultaneous determination of the effective components in two model pharmaceutical preparations, compound clorprenaline and compound paracetamol, using near infrared diffuse reflectance spectroscopy was studied and their multivariate calibration models were established. The fitting capability, prediction capability and the robustness of the PCA-SVMR models built using small sample systems (i.e. their calibration sets containing a little samples) were compared with traditional robust method partial least squares regression (PLSR). The results showed that the prediction capabilities of PLSR models depend on the precondition of their excellent fitting capabilities,but the PCA-SVMR models do not. Therefore, the dependent degree of PLSR models on the calibration samples is more than the PCASVMR models, and for the model robustness in the small sample systems of the studied drugs, the former is weaker than the latter, which makes the accuracies of their PCA-SVMR models be superior to the PLSR models on the whole for the two kinds of the researched drugs.
出处 《中国测试》 CAS 2010年第2期47-49,共3页 China Measurement & Test
关键词 主成分分析-支持向量机回归 近红外光谱 复方氯丙那林 复方对乙酰氨基酚 偏最小二乘 Principal component analysis-support vector machine regression Near infrared spectroscopy Compound clorprenaline Compound paracetamol Partial least squares
  • 相关文献

参考文献10

二级参考文献49

  • 1Frontzek T, Navin Lal T, Eekmiller R. Predicting the Nonlinear Dynamics of Biological Neurons Using Support Vector Machines with Different Kernels. In: Proc of the International Joint Conference on Neural Networks, Washington, D C, USA, 2001, 2:1492- 1497.
  • 2Vapnik V N. The Nature of Statistical Learning Theory. Springer,N Y, 1999.
  • 3Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers . In: Haussler D, ed. Proc of the 5th Annual ACM Workshop on Learning Theory, Pittsburgh, ACM Press, 1992, 144-152.
  • 4Muller K R, Smola A J, et al. Predicting Time Series with Support Vector Machines. In: Gerstner W, Germond A, et al, eds. Proc of the International Conference on Artificial Neural Networks,Lausaunne, Switzerland, Springer, 1997, 999-1004.
  • 5Mukherjee S, Osuna E, Girosi F. Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine. In: Principe J, Gile L, Morgan N, Wilson E, eds. Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Worshop, New York,1997, 511-520.
  • 6Drucker H, Burges C J C, Kaufman L, Smola A, Vapnik V N.Support Vector Regression Machines. In: Mozer M, Jordan M,Petsche T, eds. Advances in Neural Information Processing Systerns, 9, Cambridge, MA, MIT Press, 1997, 155- 161.
  • 7Vapnik V N, Golowich S, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. In: Mozer M, Jordan M, Petsche T, eds. Advances in Neural Information Processing Systems, 9, Cambridge, MA, MIT Press, 1997, 281-287.
  • 8Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Sch6kopf B, Burges C J C, Srnola A J,eds. Advances in Kernel Methods - Supprot Vector Learning, Cambridge, MA, MIT Press, 1999, 185-208.
  • 9Hevade S K, Keerthi S S, Bhattacharyya C, et al. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans on Neural Networks, 2000, 11(5): 1188-1193.
  • 10Gunn S. Support Vector Machines Classification and Regression.ISIS Technical Report, Image Speech & Intelligent Systems Group, University of Southampton, 1998.

共引文献2376

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部