期刊文献+

时变内耦合复杂网络的平衡态同步smart变结构控制(英文) 被引量:4

Smart variable structure control of complex network with time-varying inner-coupling matrix to its equilibrium
下载PDF
导出
摘要 当前同步控制问题是复杂网络研究的热点之一.本文针对具有时变内耦合结构的复杂网络,利用结点混沌动态的各态历经性,通过构造合适的滑模面,提出了smart变结构控制器的设计策略.该策略可使复杂网络动态行为趋向于所构造的全局吸引区域,从而最终实现复杂网络在平衡态的渐近同步.最后,基于3种不同拓扑结构的Lorenz结点动态的复杂网络进行仿真实验表明该控制方案具有较好的鲁棒性和有效性. The novelty in this paper lies in the establishment of smart controller and suitable multiple sliding mode manifolds according to node chaos dynamics of complex networks with time-varying inner-coupling configuration. The smart variable structure control for asymptotical synchronization to its equilibrium is developed based on the ergodicity characteristic of chaos nodes, without the involvement of linearization and other ideal assumptions. The scheme enables the behavior of complex networks to approach the desired manifolds, and eventually realizes the asymptotical synchronization. Finally, the simulations based on the Lorenz chaos complex network under three topological configurations further verify the robustness and effectiveness of the proposed scheme.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期181-187,共7页 Control Theory & Applications
基金 supported by the National Natural Science Foundation of China(60774017, 60874045) the Open Projects of Key Laboratory of Complex Systems and Intelligence Science of Chinese Academy of Sciences(20060101)
关键词 复杂网络 同步 smart控制 变结构控制 complex network synchronization smart control variable structure control
  • 相关文献

参考文献24

  • 1WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393:440 - 442.
  • 2STROGATZ S H. Exploring complex networks[J]. Nature, 2001, 410:268 - 276.
  • 3BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286:509 - 512.
  • 4BARABASI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks[J]. Physcia A, 1999, 272:173 - 187.
  • 5HOLMGREN A J. Using graph models to analyze the vulnerability of electric power networks[J]. Risk Analysis, 2006, 26(4): 955 - 969.
  • 6WANG X F, CHEN G. Complex networks: small-world, scale-free, and beyond[J]. IEEE Circuits and Systems Magazine, 2003, 3(1): 6 - 20.
  • 7YANG Y, YU X, ZHANG T. Weighted small world complex networks: smart sliding mode control[M]//Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag, 2009.
  • 8WANG X E CHEN G. Pinning control of scale-free dynamical networks[J]. Physica A, 2002, 310: 521 - 531.
  • 9CHEN T, LIU X, LU W. Pinning complex network by a single controller[J]. IEEE Transactions on Circuits and Systems-Ⅰ Regular Papers, 2006, 54(6): 1317 - 1326.
  • 10WANG X E CHEN G. Synchronization in scale-free dynamical networks: robustness and fragility[J]. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2002, 49(1): 54 - 62.

同被引文献42

  • 1ARENAS A, DIAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks [J]. Physics Reports, 2008, 469(3): 93 - 153.
  • 2PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems [J]. Physical Review Letters, 1998, 80(10): 2109 - 2112.
  • 3CHEN M Y. Some simple synchronization criteria for complex dy- namical networks [J]. IEEE Transactions on Circuits and Systems H, 2006, 53(11): 1185 - 1189.
  • 4CAI S M, ZHOU J, XIANG L, et al. Robust impulsive synchroniza- tion of complex delayed dynamical networks [J]. Physics Letters A, 2008, 372(30): 4990 - 4995.
  • 5YANG Y Q, CAO J D. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects [J]. Nonlinear Analysis - Real World Applications, 2010, 11(3): 1650 - 1659.
  • 6YU W W, CAO J D, LLI J H. Global synchronization of linearly hy- brid coupled networks with time-varying delay [J]. SIAM Journal on Applied Dynamical Systems, 2008, 7(1): 108 - 133.
  • 7DAI Y, CAI Y, XU X. Synchronisation analysis and impulsive control of complex networks with coupling delays [J]. IET Control Theory and Applications, 2009, 3(9): 1167 - 1174.
  • 8ZHOU J, XIANG L, LIU Z R. Synchronization in complex delayed dynamical networks with impulsive effects [J]. Physica A - Statisti- cal Mechanics and Its Applications, 2007, 384(2): 684 - 692.
  • 9I SORRENTINO F, or E. Adaptive synchronization of dynamics on evolving complex networks [J]. Physical Review Letters, 2008, 100(11): 114101-1 - 114101-4.
  • 10LOHMILLER W, SLOTINE J J E. On contraction analysis for non- linear systems [J]. Automatica, 1998, 34(6): 683 - 696.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部