期刊文献+

连续系统下的一种容偏估计策略 被引量:1

A bias-allowable estimator for continuous-time system
下载PDF
导出
摘要 目标跟踪系统中为降低系统复杂度和保证估计的平稳性常常选择尽可能低阶次的模型,当目标出现较高阶次的机动时,则很容易丢失目标.在假定目标的机动时间与强度均有限时,提出了容偏估计的思想,将稳态误差系数约束连同区域极点、估计误差方差上界指标一起构成估计系统的约束指标集,寻求使得稳态误差系数尽可能小的滤波器,以使得对机动目标跟踪的系统偏差尽可能小.通过将约束指标集转化为一组双线性矩阵不等式(BMIs),并利用迭代求解线性矩阵不等式(LMIs)近似BMIs的方法,得到了满足给定指标约束要求的容偏估计策略,所设计的容偏估计策略可同时保证估计的准确性和精确性的要求,从而保证了在目标出现机动时,估计输出具有尽可能小的系统偏差.最后数值算例对所提出的结论进行了说明. In an object-tracking system, the order of system model is often chosen as low as possible for reducing the computational complexity and ensuring the estimation smoothness. If the object makes a higher order maneuvering, the tracking system may lose the object. By assuming that the intensity and duration of the target maneuver are finite, we introduce the idea of bias-allowable estimation. The purpose is to find an estimator that makes the steady error coefficient as small as possible for minimizing the tracking system bias, under the constraints of regional poles and the upper bound of the error variance, along with the constraint of steady error coefficient index. The constraint index set is transformed to a set of bilinear matrix inequalities(BMIs). The expected bias-allowable estimator is obtained by iteratively solving linear matrix inequalities(LMIs) to approximate the solutions of BMIs. The proposed bias-allowable estimator ensures the accuracy and smoothness of the estimation output and guarantees the tracking system bias to be small as possible, when the target is maneuvering. Finally, a numerical example is given to illustrate the design of the bias-allowable estimation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期193-198,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60804019) 南京理工大学科技发展基金资助项目(XKF09020)
关键词 目标跟踪 容偏估计 线性矩阵不等式 稳态误差系数 多指标约束 target tracking bias-allowable estimation linear matrix inequality steady error coefficient multiindex constraint
  • 相关文献

参考文献14

  • 1BAR-SHALOM Y, LI X R. Estimation and Tracking: Principles, Techniques, and Software[M]. MA, Boston: Artech House, 1993.
  • 2ZHANG H C, BASIN M, SKLIAR M. Optimal state estimation for continuous stochastic state-space system with hybrid measurements[J]. International Journal of Innovative Computing, Information and Control, 2006, 2(2): 356 - 370.
  • 3BASIN M, PEREZ J, MARTINEZ-ZUNIGA R. Optimal filter for nolinear polynomial systems over linear observations with delay[J]. International Journal of Innovative Computing, 2006, 2(4): 863 - 874.
  • 4MASSY W E Principle components regression in exploratory statistics research[J]. Journal of the American Statistical Association, 1965, 60(2): 234 - 266.
  • 5BYRTEK M, O'SULLIVAN F, MUZI M, et al. An adaptation of ridge regression for improved estimation of kinetic model parameters from PET studies[J]. IEEE Transactions on Nuclear Science, 2005, 52(1): 63 - 68.
  • 6VANDEN B K, HUBERT M. Robustness properties of a robust partial least squares regression method[J]. Analytica Chimica Acta, 2004, 515(1): 229 - 241.
  • 7SCHERZINGER B M, DAVISON E J. Generalized error coefficients for the multivariable servomechanism problem[C] //Proceedings of 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. USA: IEEE, 1981, 20:1459 - 1465.
  • 8HAU F J. Linear systems and nonunity feedback[J]. IEEE Transactions on Automatic Control, 1973, 18(3): 319- 321.
  • 9臧文利,郭治.随机穿越特征指标下的满意激光回波问题[C]//第24届中国控制会议论文集.沈阳:东北大学出版社,2005:892-894.
  • 10钱龙军,佘炎,郭治.跟踪系统的满意控制研究[J].控制理论与应用,2002,19(4):591-594. 被引量:2

二级参考文献9

  • 1Guo Zhi. A survey of satisfying control and estimation [ A]. Proceedingsof the 14th IFAC World Congress [C]. Beijing, China, 1999,443 - 447
  • 2Hotz A, Skelton R E. Covariance control theory [J]. Int. J. Con trol, 1987,46(1):13-32
  • 3Skelton R E, Iwasaki T. Lyapunov and covariance controllers[J]. Int. J. Control, 1993,57(3):519-536
  • 4Zhu J, Guo Zhi. Robust constrained variance control for a class of uncertain stochastic systems [ J ]. Control Theory and Applications, 1996,13(2) :230 - 234
  • 5Wang Z, Tang G, Chen X. Robust controller design for uncertain linear systems with circular pole constraints [ J]. Int. J. Control, 1996,65(6): 1045 - 1054
  • 6Wang Z, Chen X, Guo Zhi. Control design for continuous systems with variance and circular pole constraints [J]. Int. J. Systems Sci ence, 1995,26(5):1249- 1256
  • 7ChilaliM, GahinetP. H∞ design with pole placement constraints: an LMI approach [J]. IEEE Trans. Automat. Control, 1996,41(3): 358 - 367
  • 8Khargonekar P p, Rotea M A. Mixed H2/H∞ control; a convex op timation approach [J]. IEEE Trans. Automat. Control, 1991,36(7) :824- 837
  • 9Boyd S L, Ghaoui E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory [M]. SIAM books, 1994

共引文献6

同被引文献25

  • 1Paredis C J J, Brown H B, Khosla P K. Rapidly deployable manipulator system. Robotics and Autonomous Systems, 1997, 21(3): 289-304.
  • 2Edwards C, Alwi H, Tan C P. Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. International Journal of Applied Mathematics and Computer Science, 2012, 22(1): 109-124.
  • 3Siqueira A A G, Terra M H, Buosi C. Fault-tolerant robot manipulators based on output-feedback H∞ controllers. Robotics and Autonomous Systems, 2007, 55(10): 785-794.
  • 4Mirzaee A, Salahshoor K. Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller. Journal of Process Control, 2012, 22(3): 626-634.
  • 5Tan C P, Habib M K. The development of a fault-tolerant control approach and its implementation on a flexible arm robot. Advanced Robotics, 2007, 21(8): 887-904.
  • 6de Silva C W, Wong K. Online fault identification and fault-tolerant control of a multi-module manipulator. International Journal of Robotics and Automation, 2010, 25(3): 217-228.
  • 7Edwards C, Tan C P. Sensor fault tolerant control using sliding mode observers. Control Engineering Practice, 2006, 14(8): 897-908.
  • 8Izumikawa Y, Yubai K, Hirai J. Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer. IEEE/ASME Transactions on Mechatronics, 2005, 10(4): 391-396.
  • 9Wu G Q, Lin B J, Zhang S C. Fault-tolerant backstepping attitude control for autonomous airship with sensor failure. Procedia Engineering, 2012, 29: 2022-2027.
  • 10Talebi H A, Khorasani K, Tafazoli S. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem. IEEE Transactions on Neural Networks, 2009, 20(1): 45-60.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部