期刊文献+

基于安全聚类算法的挖掘机故障诊断研究 被引量:1

Research on Excavator Fault Diagnosis Based on Safety Cluster Algorithm
下载PDF
导出
摘要 对挖掘机迅速、准确进行监测,有效进行挖掘机故障实时诊断在大型工程中成为一种迫切要求。文章提出一种安全性和相关性相结合的安全聚类算法,并在聚类过程中生成一棵安全二叉树,利用支持向量机和二叉树对挖掘机故障实时监测。实践证明这种方法不仅保证了故障诊断的正确率,而且可以让引起严重后果的故障得到优先诊断。 Quickly and accurately monitoring the excavators, the effective implementation of real- time fault diagnosis of excavators become an urgent requirement. This paper presents a safety combined with the relevant clustering algorithm, and in the proeess of clustering, generates a safety - binary tree. Making use of support vector machines and binary tree to achieve excavator real - time monitoring. Practice has proved that this meth- od not only guarantees the accuracy of fault diagnosis, and can cause more serious consequences of the failure diagnosis can be given priority.
作者 魏兵 李亚非
出处 《煤炭技术》 CAS 北大核心 2010年第3期15-17,共3页 Coal Technology
关键词 挖掘机 故障诊断 支持向量机 二叉树 聚类 excavators fault diagnosis support vector machine binary tree clustering
  • 相关文献

参考文献6

二级参考文献10

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002.
  • 3Vapnic 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4VAPNIK V. The Nature of Statistical Learning [M]. New York:Spring Verlag,1995.
  • 5HSU C-W,LIN C-J. A comparison of methods for multi-class support vector machines[J]. IEEE Transaction on Neural Network, 2002,13(2):415-425.
  • 6PLATT JC,CRISTIANINI N,SHAWE-YAYLOR J. Large Margin DAGs for multiclass classification [A]. Advances in Neural Information Processing Systems [C], 2000. 547-553.
  • 7BEILEY A. Class-dependent features and multicategory classification [D]. navy.mil/csf/papers/baileyphd.pdf,2001.
  • 8HAYKINS 叶世伟 史忠植 译.Neural Networks: A Comprehensive Foundation[M]. 2nd Edition[M].北京:机械工业出版,2004.321-347.
  • 9PLATT JC. Fast Training of Support Vector Machines using Sequential Minimal Optimization[A]. Advances in Kernel Methods: Support Vector Learning[C]. Cambridge:MIT Press,1999. 185-208.
  • 10刘志刚,李德仁,秦前清,史文中.支持向量机在多类分类问题中的推广[J].计算机工程与应用,2004,40(7):10-13. 被引量:150

共引文献260

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部