期刊文献+

一种新的基于PCA的集成学习算法 被引量:1

Algorithm of PCA Based Ensemble Learning
下载PDF
导出
摘要 给出了主成分分析法(PCA)的数学描述及解释,提出了基于PCA的分类器提取方法及基于PCA的集成学习算法.在UCI的6个公用数据集上,对提出的算法进行了较全面的实验研究和分析,实验表明在多项指标上所提出的算法优于表现良好的传统集成学习算法. The mathematical description about the principal components analysis method (PCA) is given. The approaches of PCA based classifiers training and the algorithm of PCA based ensemble learning are put foward. Experimental results on six common data sets of UCI show our algorithm is more efficient than the traditional ensemble learning algorithms.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2010年第2期154-159,共6页 Journal of Hebei Normal University:Natural Science
基金 河北省科学研究发展计划项目(09213515D 09213575D) 河北省教育厅科研基金(2008472) 河北师范大学科研基金(L2006B03 L2007Z01)
关键词 主成分分析法 集成学习 分类器 principal components analysis ensemble learning classifier
  • 相关文献

参考文献5

二级参考文献11

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 3Karl-Michael Schneider.A comparison of event models for na(i)ve bayes anti-spam e-mail filtering[A].Proc.10th Conference of the European Chapter of the Association for Computational Linguistics[C].Budapest,Hungary,2003.307-314.
  • 4Christian Siefkes,et al.Combining winnow and orthogonal sparse bigrams for incremental spam filtering[A].Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004)[C].2004.410-421.
  • 5Bauer E,Kohavi R.An empirical comparison of voting classification algorithms:bagging,boosting,and variants[J].Machine Learning,1999,36(1-2):105-139.
  • 6D Reynolds,R Rose.Robust text-independent speaker identification using Gaussian mixture speaker models[J].IEEE Trans Speech and Audio Proc,1995,3(1):72-83.
  • 7A K Jain,RPW Duin,J Mao.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
  • 8Leo Breiman. Stacked regressions[J] 1996,Machine Learning(1):49~64
  • 9孙怀江,胡钟山,杨静宇.基于证据理论的多分类器融合方法研究[J].计算机学报,2001,24(3):231-235. 被引量:25
  • 10熊应,朱斌,朱海云.电子邮件智能分类系统的设计[J].电子学报,2001,29(12):1653-1655. 被引量:6

共引文献400

同被引文献15

  • 1张沧生,崔丽娟,杨刚,倪志宏.集成学习算法的比较研究[J].河北大学学报(自然科学版),2007,27(5):551-554. 被引量:6
  • 2Merler S, Caprile B, Furlanello C. Parallelizing AdaBoost by weights dynamics [J]. Computational Statistics & Data Analysis, 2007, 51 (5): 2487-2498.
  • 3Zhang CX, Zhang JS. A local boosting algorithm for solving classification problems[J]. Computational Statistics & Data Analysis, 2008, 52 (4): 1928-1941.
  • 4Nishikawa T, Abe S. Maximizing margins of multilayer neural networks [C]//Singapore: Proceedings of the 9th International Conference on Neural Information Processing, 2002.
  • 5Chang Chihchung, Lin Chihjen. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 27. Software available at http: //www. csie. ntu. edu. tw/-cjlin/libsvm.
  • 6Fan RE, Chang KW, Hsieh CJ, et al. LIBLINEAR: A library for large linear classification [J]. Journal of Machine Learning Research, 2008 (9): 1871-1874.
  • 7Weston J, Schoolkopf B, Eskin E, et al. Dealing with large diagonals in kernel matrices EG]. Lecture Notes in Computer Science 243: Principles of Data Mining and Knowledge Disco- very, Springer, 2002.
  • 8Lean Yu. Support vector machine based multiagent ensemble learning for credit risk evaluation [J]. Expert Systems with Application, 2010, 37 (2): 1351-1360.
  • 9Ke Tang, Minlong Lin, Fernanda L Minku, et al. Selective negative correlation learning approach to incremental learning [J]. Neurocomputing, 2009, 72 (13/15): 3077-3084.
  • 10GAO Yang, HUANG Zhexue, WU Lei, et al. Learning classifier system ensemble and compact rule set [J]. Connection Science, 2007, 19 (4): 321-337. DOI: 10. 1080/09540090701725466.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部