期刊文献+

基于UWPCA与粗糙集相结合的表情识别

Expression recognition based on UWPCA and rough set
下载PDF
导出
摘要 针对现有的WPCA方法强调信息不足和提取特征维数过高问题,提出了一种改进的加权主成分分析和粗糙集相结合的方法。该算法利用加权主成分分析的原理,将特征加权和主成分分析相结合,构造了一个新的双向三中心高斯分布函数作为加权函数对图像各维特征进行加权,从而得到特征向量,再使用改进的粗糙集属性约简算法对得到的特征向量进行筛选,去除冗余信息。实验结果显示,方法是有效的。 In view of the question that WPCA method emphasizes information insufficiently and the characteristic dimension extracted excessively high,rough set attribute reduction algorithm with updated WPCA applied in expression features selection is advanced.The weighting principal components analysis's principle is used.The characteristic weighted sum principal components analysis is unified.A new bidirectional three center Gaussian distribution function is constructed as the weighting function.The image characteristics of each dimension are weighted in order to get characteristic vector,and then the improved rough set properties reduction algorithm is used to filter the obtained feature vector to remove redundant information.Experimental results show that this method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第9期138-141,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60673190) 江苏大学高级人才科研启动基金资助项目(No.05JDG020)~~
关键词 加权主成分分析(WPCA) 粗糙集 特征选择 表情分类 Weighted Principal Component Analysis(WPCA) rough set features selection expression classification
  • 相关文献

参考文献8

  • 1Calder A J,Mike B A,Paul M,et al.A principal component analysis of facial expressions[J].Vision Research,2001,41:1179-1208.
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 3Khanum A,Mufti M,Javed M Y,et al.Fuzzy case-based reasoning for facial expression recognition[J].Fuzzy Sets and Systems,2009,160 (2) :231-250.
  • 4Liang Jive.The algorithm on knowledge reduction in incomplete information systems[J].International Journal of Uncertainty,Fuzziness and Knowledge Based Systems,2002,10( 1 ) :95-103.
  • 5乔宇,黄席樾,柴毅,邓金城,陈虹宇.基于加权主元分析(WPCA)的人脸识别[J].重庆大学学报(自然科学版),2004,27(3):28-31. 被引量:8
  • 6Liang Jive.The algorithm on knowledge reduction in incomplete information systems[J].International Journal of Uncertainty,Fuzziness and Knowledge Based Systems,2002,10( 1 ):95-103.
  • 7徐燕,怀进鹏,王兆其.基于区分能力大小的启发式约简算法及其应用[J].计算机学报,2003,26(1):97-103. 被引量:39
  • 8谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134

二级参考文献28

  • 1[5]Starzyk J, Nelson D E, Sturtz K. Reducts. A mathematical foundation for improved reduct generation in information systems. Journal of Knowledge and Information Systems, 2000, 2(2):131~146
  • 2[6]Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables. In: Ras Z W, Zemankiva M eds. Methodologies for Intelligent Systems. Berlin: Springer-Verlag,1994. 346~355
  • 3[7]Ziarko W. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993, 46(1):39~59
  • 4[8]Pawlak Z. Grzymala-Busse J, Slowinski R etal. Rough sets.Communications of the ACM, 1995, 38(11): 89~95
  • 5[11]Ying Wu, Thomas S Huang. Hand moeling, analysis, and recognition. IEEE Signal Processing Magazine, 2001(5):51~60
  • 6[12]Lin J, Wu Y, Huang T S. Modeling human hand constraint. In: Proceedings of Workshop on Human Motion. Austin, Texas USA,2000. 121~126
  • 7[1]Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341~356
  • 8[2]Wong S K M, Ziarko W. Optimal decision rules in decision table. Bulletin of Polish Academy of Sciences, 1985,33(11~12):693~696
  • 9[3]Hu Xiao-Hua. Knowledge discovery in databases:an attrbute oriented rough set approach[Ph D dissertation]. University of Regina, Regina, Canada,1995
  • 10[4]Starzyk J, Nelson D E, Sturtz K. Reducts in composed information systems. Bulletin of International Rough Set Society,1999,3(1~2):19~22

共引文献532

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部