期刊文献+

基于PSO和BP复合算法的模糊神经网络控制器 被引量:3

Fuzzy neural network controller based on particle swarm optimization and back-propagation complex algorithm
下载PDF
导出
摘要 为了克服单独应用粒子群算法(PSO)或BP算法训练模糊神经网络控制器参数时存在的缺陷,提出了一种训练模糊神经网络参数的PSO+BP算法。该算法将二者相结合,即在PSO算法中加入一个BP算子,以充分利用PSO算法的全局寻优能力和BP算法的局部搜索能力,从而更有效地提高其收敛速度、训练效率和提高该模糊神经网络控制器的控制效果。最后的仿真实验结果验证了该基于PSO+BP复合算法的模糊神经网络控制器的有效性和可行性。 In order to overcome the shortcomings of the algorithm when applying the particle swarm optimization algorithm (PSO) or the back-propagation algorithm (BP) to train the fuzzy neural network controller parameters, a combined algorithm of both PSO and BP was proposed. The combined algorithm takes full advantages of the global optimization ability of PSO and local search ability of BP by inserting a BP operator into the PSO algorithm. The convergence speed, the training efficiency and the performance of the fuzzy neural network controller are improved greatly. The final simulation results verify the effectivity and feasibility of the fuzzy neural network controller based on the combined algorithm of both PSO and BP.
出处 《自动化与仪器仪表》 2010年第2期1-3,共3页 Automation & Instrumentation
关键词 模糊神经网络 粒子群算法 BP算法 Fuzzy neural network Particle swarm optimization Back-propagation algorithm
  • 相关文献

参考文献4

二级参考文献19

共引文献46

同被引文献29

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部