期刊文献+

OHR:一种基于本体的个性化混合服务推荐模型

OHR:A Hybrid Personalized Recommendation Model Based on Ontology
下载PDF
导出
摘要 随着网络信息量的日益增加,为用户提供个性化服务是一种趋势。该文通过建立一个通用的服务本体模型,将项目集合划分到多个服务子类中,经过概率计算得到用户的兴趣分布,并在此基础上提出了一个结合内容过滤和项目协同过滤的个性化混合服务推荐模型(OHR)。实验结果表明了该模型在服务推荐上具有较高的准确率和发现用户新兴趣的能力。 With the dramatic increase of information available on the Internet, it is obviously a trend to provide users with personalized service. In this paper, through building a generalized service model based on ontology, the Items are classified into service sub-category, and the probability distribution of the usersr interests are calculated. On the basis of the combination of Content Filtering and hem-based Collaborative Filtering, an new ontology-based hybrid personalized recommendation model(OHR) is put forward. The experimental results show that OHR provides the better recommendation results than traditional collaborative filtering algorithms, as well as the better ability to discover the users' new interests.
出处 《中文信息学报》 CSCD 北大核心 2010年第2期84-90,共7页 Journal of Chinese Information Processing
基金 国家863计划重点资助项目(2009AA011900)
关键词 计算机应用 中文信息处理 服务本体 混合个性化服务推荐模型 项目协同过滤 概率计算 computer application Chinese information processing ontology hybrid personalized recommendations item-based collaborative filtering probabilistic model
  • 相关文献

参考文献15

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 2Gediminas Adomavicius, Alexander Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions [C]//IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) :734-749.
  • 3B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-Based Collaborative Filtering Recommendation Algorithms[C]//Proc. 10th Int'l WWW Conf. , 2001.
  • 4Mukund Ddeshpande, George Karypis, Item-Based Top N Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22 ( 1 ): 143-177.
  • 5K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.- P. Kriegel, Probabilistic Memory-Based Collaborative Filtering[J]. IEEE Trans. Knowledge and Data Eng. , 2004,16(1) :56-69.
  • 6Z. Huang, H. Chen, and D. Zeng, Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering [J]. ACM Trans. Information Systems, 2004,22 ( 1 ): 116-142.
  • 7王明文,陶红亮,熊小勇.双向聚类迭代的协同过滤推荐算法[J].中文信息学报,2008,22(4):61-65. 被引量:16
  • 8宗胜,姜丽红.推荐系统中遗漏值解决方法的研究[J].计算机应用与软件,2008,25(6):193-195. 被引量:2
  • 9戴亚娥,龚松杰.个性化服务中基于模糊聚类的协同过滤推荐[J].计算机工程与科学,2009,31(4):110-112. 被引量:5
  • 10罗喜军 王韬丞 杜小勇 刘红岩 何军.基于类别的推荐一种解决协同推荐中冷启动问题的方法[J].计算机研究与发展,2007,3.

二级参考文献106

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2潘红艳,林鸿飞,赵晶.基于矩阵划分和兴趣方差的协同过滤算法[J].情报学报,2006,25(1):49-54. 被引量:16
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.

共引文献565

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部