摘要
讨论了食饵具有脉冲扰动,捕食者具有阶段结构的常数成熟时滞Leslie—CowerHollingII功能反应的Gomportz的捕食一食饵模型,通过利用由频闪映射决定的离散动力系统,以及脉冲方程的比较定理,得到了相应的临界条件以确保捕食者灭绝周期解的全局渐近吸引和系统的持久性.
We consider a predator-prey Leslie-Gower Holling II type schemes and Gomportz model with periodic harvesting for the prey and stage-strucureed for the predator with constant maturation time delay. By use of the discrete dynamical system determimed with the stroboscopic map and the comparison theory of impulsive equation, we obtain some corresponding threshold conditions which guarantee the globally asymptotical stability of prey-extinction periodic solution and the permanence of this system.
出处
《北华大学学报(自然科学版)》
CAS
2010年第1期24-31,共8页
Journal of Beihua University(Natural Science)
基金
山西师范大学自然科学基金项目(ZR09008)