期刊文献+

具有脉冲扰动与阶段结构的Leslie-Gower HollingⅡ捕食模型

A Stage-structured Predator-prey Leslie-Gower Holling Ⅱ Model with Disturbing Pulse
下载PDF
导出
摘要 讨论了食饵具有脉冲扰动,捕食者具有阶段结构的常数成熟时滞Leslie—CowerHollingII功能反应的Gomportz的捕食一食饵模型,通过利用由频闪映射决定的离散动力系统,以及脉冲方程的比较定理,得到了相应的临界条件以确保捕食者灭绝周期解的全局渐近吸引和系统的持久性. We consider a predator-prey Leslie-Gower Holling II type schemes and Gomportz model with periodic harvesting for the prey and stage-strucureed for the predator with constant maturation time delay. By use of the discrete dynamical system determimed with the stroboscopic map and the comparison theory of impulsive equation, we obtain some corresponding threshold conditions which guarantee the globally asymptotical stability of prey-extinction periodic solution and the permanence of this system.
出处 《北华大学学报(自然科学版)》 CAS 2010年第1期24-31,共8页 Journal of Beihua University(Natural Science)
基金 山西师范大学自然科学基金项目(ZR09008)
关键词 Leslie—Gower 阶段结构 脉冲扰动 全局吸引 持久 Leslie-Gower stage structure impulse perturbation global attractivity permanence
  • 相关文献

参考文献1

二级参考文献8

  • 1Kuang Y.Delay Differential Equations with Applications in Population Dynamics[]..1993
  • 2Aiello W G,Freedman H I.A time-delay model of single-species growth with stage structure[].Mathematical Biosciences.1990
  • 3Wood S N,Blgthe S P,Gurney W S C,Nibet R M.Instability in Mortality Estimation Schemes Related to Stage-structure Population Models[].SIMA J math Appl in Medicine and Biology.1989
  • 4Leslie P H,Gower J C.The properties of a stochastic modelfor the predator-prey type of interaction between two species[].Biometrika.1960
  • 5Pielou E C.An introduction to mathematical ecology[]..1969
  • 6AZIZ-ALAOU M A,DAHER OKIYE M.Boundedness and gl-obal stability for a predator-prey model with modified leslie-gower and holling-type∏schemes[].Applied Mathematics Letters.2003
  • 7LakshmikanthamV.BainovDD ,SimeonovPS[]..1989
  • 8Leslie,P. H.Some further notes on the use of matrices in population mathematics[].Biometrika.1948

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部