期刊文献+

Gold型Bent函数的两个注记

Two notes on Bent functions of Gold case
下载PDF
导出
摘要 Bent函数一直是密码学研究中的重要课题,如何判断给出的布尔函数是否为bent函数是必须要解决的问题.通过对Gold型函数中指数的分析,得到了Gold型函数成为bent函数的充要条件,此充要条件是Leander文献中定理的部分推广,用该结论判断bent函数更加简便.同时还讨论了多个迹函数之和成为bent函数的一个充要条件. Bent functions are important in cryptography, and one must know how to judge whether a Boolean function is bent. We obtain a sufficient and necessary condition by analyzing the power in functions of Gold case. This sufficient and necessary condition is a partial generalization of the theorem in Leander's reference. Our result makes the judgement of bentness of Gold ease much easier. We also discuss a sufficient and necessary condition for that the sum of a few trace functions is bent.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2010年第2期257-262,共6页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(60673068) 河海大学理科基金(2084/409270)资助
关键词 布尔函数 BENT函数 迹函数 WALSH谱 Boolean function, bent function, trace function, Walsh spectrum
  • 相关文献

参考文献13

  • 1Leander N G. Monomial bent functions[J]. IEEE Trans Inform Theory, 2006, 52(2) : 738-743.
  • 2Khoo K, Goog G, Stinson D R. A new family of gold-like sequence [ C ]//IEEE International Symposium on Information Theory 02, Lausanne, Switzerland, 2002:181.
  • 3Yu N Y, Gong G. A new binary sequence family with low correlation and large size [J]. IEEE Trans on Inform Theory, 2006, 52(4) : 1624-1636.
  • 4Helleseth T, Kholosha A. New monomial bent functions over the finite fields of odd characteristic[ C]//Proc of IEEE ISOC ITW2005 on Coding and Complexity,2005:72-76.
  • 5Ying Zhao.Some Properties of Bent Functions[J].Acta Mathematicae Applicatae Sinica,2007,23(3):389-394. 被引量:1
  • 6Canteaut A, Daum M, Dobbertin H, et al. Normal and nonnormal bent functions[ C ]//Proc Workshop on Coding and Cryptography( WCC 2003 ). Versailles, France,2003 : 91-100.
  • 7Daum M, Dobbertin H, Leander N G. An algorithm for checking normality of Boolean functions [ C ]//Proc Workshop on Coding and Cryptography (WCC 2003). Versailles, France, 2003: 133-142.
  • 8Canteaut A, Charpin P, Kyureghyan G M. A new class of monomial bent functions[ J]. Finite Fields and Their Applications, 2008, 14 ( 1 ) : 221-241.
  • 9Gold R. Maximal recursive sequences with 3-valued cross correlation functions[ J]. IEEE Tran Inform. Theory, 1968, 14 ( 1 ) : 154-156.
  • 10Hu H G, Hu L, Feng D G. On quadratic bent functions in polynomial forms[J]. IEEE Trans Inform Theory, 2007, 53(7) : 2610-2615.

二级参考文献13

  • 1Youssef A M and Gong G. Hyper Bent functions.Eurocrypt'2001, Innsbruck, Austria, May 2001. LNCS2045.406 419.
  • 2Gong G and Golomb S W. Tranform Domain Analysis of DES. IEEE Trans. on Information Theroy. 19991 45(6):2065-2073.
  • 3Clarlet C and Caborit P. Hyper-Bent functions and cyclic codes. IEEE International Symposium on Information Theory 2004, Chicago, USA, June: 499-515.
  • 4Rothous O S. On Bent functions. Journal of Combinatorial Theory, 1976, 20(A): 300-305.
  • 5Lidl R and Niederreiter H. Finite Fields. 2nd ed, Cambridge,England: Cambridge University Press, 1997: 56-57.
  • 6Dillion J F. Elementary hadamard difference sets. [Ph.D.Thesis], University of Maryland, 1974.
  • 7Nyberg K. Perfect nonlinear S-boxes. Advances in Cryptology-Eurocrypt'91, Brighton, UK, April 1991, LNCS 547: 378-383.
  • 8Camion, P., Carlet, C., Charpin, P., Sendrier, N. On correlation-immune functions. Advances in Cryptology- CRYPTO'91, volume 576 of Lecture Notes in Computer Science, 87-100, Springer-Verlag, Berlin, Heidelber, New York, 1991
  • 9Carlet, C. Two new classes of bent functions. EURO-CRYPT'93 Lecture Note in Computer Science 765, 1994, 77-101
  • 10Carlet, C. Partially-Bent Fuctions. Designs, Codes and Cryptography, 3(2): 135-145 (1993)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部