摘要
提出变型后的费马—斯坦勒尔问题,即在平面上找一点,使它到该平面上给定两点和一直线的距离的加权和最小.应用哈密顿原理,用物理学方法解决了这一问题,显示出用物理学方法解决数学问题的优越性.
The transformed Fermat- Steiner problem was discussed and resolved by physical method according to Hamihonian theory, which is how to search a point that the distances' weighted sum is minimum in a plane. The distances are two distances between the point and two given points in the plane and the distance between the point and a given straight line in the plane.
出处
《佳木斯大学学报(自然科学版)》
CAS
2010年第1期126-128,共3页
Journal of Jiamusi University:Natural Science Edition
关键词
哈密顿原理
费马-斯坦勒尔问题
变型
Hamilton's Principle
Fermat- Steiner problem
transformation