期刊文献+

极小抛物子代数上具Borel-Weil-Bott性质的权

Weights with the Borel-Weil-Bott Property on the Minimal Parabolie Subalgebras
下载PDF
导出
摘要 对支配权引入在极小抛物子代数上具有Borel-Weil-Bott性质的概念.证明了:若λ在极小抛物子代数上具有Borel-Weil-Bott性质,则λ在Uq上Borel-Weil-Bott定理成立.还证明,对如此的λ,有Uq模同构H0q(λ)■H0q(-w0λ)*,且H0q(λ)是首权为λ的不可约Uq模.在chk=0的情形,本文刻画了具有Borel-Weil-Bott性质的正则支配权的特征.作为例子,对A1,A2型量子代数,给出了有足够多的非正则支配权具有Borel-Weil-Bott性质. This paper introduced a new concept--dominant weight with the Borel - Well - Bott property on the minimal parabolie s ubalgebras. It was proved that if λ has the Borel- Weil- Bott property on the minimal parabolie subalgebras, then A satisfies the Borel- Weil- Bott theory on Uq and that for such A there is the Uq module isomorphism Hq^0 (λ) ≈ Hq^0 ( - w0 λ )* , where Hq^0 (λ) is a irreducible Uq module with the highest weight A . At the case chk = 0 , the charaterization of the l - regular dominant weight with the Borel- Weil- Bott property was described. As an example, for the quantum algebras of type A1 ,A2 , enough non regular dominant weights with the Borel- Weil- Bott property were given.
机构地区 暨南大学数学系
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第1期140-143,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 量子代数 极小抛物子代数 不可约模 quantum algebras weight minimal parabolie subalgebras irreducible module
  • 相关文献

参考文献4

  • 1H.H. Andersen, The Strong Linkage Principle for Quantum Groups at Roots of 1[J].J. Algebra, 2003, 260, 2-15.
  • 2H.H. Andersen, Polo and Kexin Wen, Representations of Qusantum Algebras[J].Invent. Math. , 1991, 104, 1--59.
  • 3J.E. Humphreys, Introduction to Lie Algebras and Representation Theory[M] .New York. Heidelberg. Berlin- 1972.
  • 4G. Luszting, On Quantum Groups[J]. J. Algebra, 1990, 131, 466 - 475.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部