期刊文献+

条件贝叶斯网络分类器及其在产品故障率等级分类中的应用 被引量:3

Conditional Bayesian network classifier and its application in product failure rate grade indentifying
下载PDF
导出
摘要 针对传统贝叶斯网络分类器模型的不足,提出了一种基于条件贝叶斯网络的分类器模型。通过分析贝叶斯网络模型给定目标变量时各特征变量间的条件独立关系,充分利用其关联关系,为解决分类问题提供了一条有效途径。在此基础上,提出了基于条件贝叶斯网络分类器模型的建模方法用于指导实际模型建立和应用。实例分析结果表明,条件贝叶斯网络与其他的贝叶斯网络分类器及传统的决策树C4.5分类器相比,在提高分类器分类精度的同时降低了网络模型结构复杂度。 Aiming at the weakness of traditional Bayesian network classifiers,a new kind of classifaier model based on Conditional Bayesian Networks (CBN) was proposed. With the indication of the conditional independence relationship among attribute variables given the target variable,this model provided an effective approach for classification problems. Based on this,the modeling method for building CBN classifier was listed to guiding the modeling and application. Case study was carried out and the results showed that,comparing to existing Bayesian networks classifiers and traditional decision tree C4.5,the CBN not only enhanced the total precision but also reduced the complexity of network structure.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第2期417-422,共6页 Computer Integrated Manufacturing Systems
基金 国家863/CI MS主题资助项目(2007AA04Z187) 中国留学基金委中法博士生学院资助项目 航空科学基金资助项目(2009XE53052)~~
关键词 分类器 贝叶斯网络 故障率等级 模型 classifier bayesian network failure rate grade models
  • 相关文献

参考文献11

  • 1JENSEN F. An introduction to Bayesian networks[M]. London, UK:UCL Press,1996.
  • 2邓甦,付长贺.四种贝叶斯分类器及其比较[J].沈阳师范大学学报(自然科学版),2008,26(1):31-33. 被引量:8
  • 3DUDA R, HART P. Pattern classification and scene analysis [M]. New York, N. Y. , USA:John Wiley & Sons,1973.
  • 4FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers [J], Machine Learning, 1997, 29 ( 2/3 ): 131-163.
  • 5LANTERMAN A. Sehwarz, wallace, and rissanen:intertwining themes in theories of model selection[J]. International Statistical Review, 2001,69(2) : 185-212.
  • 6BAESENS B, VERSTRAETEN G, VAN DEN POEL D, et al. Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers[J]. European Journal of Operational Research, 2004,156 (2) : 508-523.
  • 7费胜巍,孙宇,师会超.基于故障分析模型的贝叶斯网络构建及应用[J].计算机集成制造系统,2007,13(9):1768-1773. 被引量:9
  • 8杨志波,董明.动态贝叶斯网络在设备剩余寿命预测中的应用研究[J].计算机集成制造系统,2007,13(9):1811-1815. 被引量:12
  • 9蔡志强,孙树栋,YANNOU Bernard,司书宾.基于贝叶斯网络分类器的产品故障率分类研究[J].计算机应用研究,2009,26(9):3307-3309. 被引量:3
  • 10BAMBER D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph[J]. Journal of Mathematical Psychology, 1975, 12 (4) : 387-415.

二级参考文献38

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2王双成,张邦佐,王辉,苑森淼.基于贝叶斯网络理论的TAN分类器无向依赖扩展[J].小型微型计算机系统,2005,26(1):42-45. 被引量:3
  • 3孙宇,彭强,张晓阳,陆宝春.基于混合结构树的故障诊断技术研究[J].计算机集成制造系统,2005,11(7):1030-1033. 被引量:6
  • 4JENSEN F V. An introduction to Bayesian networks [ M ]. London : UCL Press, 1996.
  • 5FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers [ J]. Machine Learning, 1997,29:131-163.
  • 6CHENG Jie, GREINER R. Comparing Bayesian network classifiers [ C ]//Proc of the 15th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1999 : 101-108.
  • 7MADDEN M G. A new Bayesian network structure for classification tasks[ C]//Proc of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science. London: Springer-Verlag, 2002 : 203-208.
  • 8BAESENS B, VERSTRAETEN G, POEL D van den, et al. Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers [ J]. European Journal of Operational Research, 2004, 156(2) :508-523.
  • 9DUDA R O, HART P E. Pattern classification and scene analysis [ M]. New York:Wiley, 1973.
  • 10MUNTEANU P, BENDOU M. The EQ framework for learning equivalence classes of Bayesian networks [ C ]//Proc of IEEE International Conference on Data Mining. Washington DC: 1EEE Computer Society, 2001: 417-424.

共引文献28

同被引文献50

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部