期刊文献+

基于支持向量机的^(31)P磁共振波谱肝细胞癌诊断 被引量:2

^(31)P MRS data diagnosis of hepatocellular carcinoma based on support vector machine
下载PDF
导出
摘要 支持向量机是在统计学习理论基础上发展起来的一种新的机器学习方法,在模式识别领域有着广泛的应用。利用基于支持向量机模型的31P磁共振波谱数据对肝脏进行分类,区别肝细胞癌,肝硬化和正常的肝组织。通过对基于多项式核函数和径向基核函数的支持向量机分类器进行比较,并且得到三种肝脏分类的识别率。实验表明基于31P磁共振波谱数据的支持向量机分类模型能够对活体肝脏进行诊断性的预测。 SVM(Support Vector Machine) is a new machine-learning technique which is developed based on statistical theory and has many applications in pattern recognition.We use SVM model based on 31P MRS to distinguish three diagnostic types of hepatocellular carcinoma,hepatic cirrhosis and normal hepatic tissue.The classification accuracy of SVM based on polynomial and radial basis function kernel were compared,and the recognition accuracy of the three categories were obtained.The result of experiments shows that SVM model based on 31P MRS provides diagnostic prediction of liver in vivo.
出处 《生物信息学》 2010年第1期20-22,共3页 Chinese Journal of Bioinformatics
基金 山东省自然科学基金(Y2006C96) 山东省自然科学基金(Y2008G30) SRF for ROCS SEM
关键词 支持向量机31P 磁共振波谱 肝细胞癌 模式识别 Support Vector Machine(SVM) 31P(31Phosphorus) Magnetic Resonance Spectroscopy hepatocellular carcinoma pattern recognition
  • 相关文献

参考文献4

二级参考文献71

  • 1郑乐民.早期波谱学在北京大学[J].波谱学杂志,1995,12(5):557-559. 被引量:2
  • 2[1]Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S.,Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X.,et al., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature,403:503-511.
  • 3[2]Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002.Choosing kernel parameters for support vector machines.Machine Learning, 46:131-159.
  • 4[3]Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press,Cambridge.
  • 5[4]Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97:77-87.
  • 6[5]Furlanello, C., Serafini, M., Merler, S., Jurman, G., 2003. An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 16:641-648.
  • 7[6]Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing,J.R., Caligiuri, M.A., et al., 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
  • 8[7]Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.
  • 9[8]Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner,M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M.,Rafeld, M., et al., 2001. Gene expression profiles in hereditary breast cancer. The New England Journal of Medicine, 344:539-548.
  • 10[9]Houck, C., Joines, J., Kay, M., 1995. A Genetic Algorithm for Function Optimization: A Matlab Implementatio.NCSU-IE TR 95-09, North Carolina State University,USA.

共引文献296

同被引文献21

  • 1李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 2刘强,王滨,武乐斌.^(31)P磁共振波谱回顾及其在肝脏等脏器中的临床应用[J].医学影像学杂志,2003,13(11):868-871. 被引量:8
  • 3刘强,王滨,武乐斌.^(31)PMR波谱分析在肝细胞癌、肝硬化及正常肝组织中的临床应用价值[J].实用放射学杂志,2005,21(5):493-496. 被引量:14
  • 4阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 5Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expres- sion Monitoring [J]. Science, 1999, 286(5439): 531-537.
  • 6Singh D, Febbo P G, Ross K, et al. Gene expression correlates of Clinical prostate cancer behavior [ J]. Cancer Cell, 2002,11 (2) : 203 - 209.
  • 7Wang S, Wang J, Chen H, et al. The classification of tumor usinggene expression profile based on support vector machines and factor analysis[ R]. International Conference on Intelligent Systems De- sign and Appfications, jinan, IEEE Computer Society Press, 2006, 2:471 -476.
  • 8D D Lee, H S Seung. Algm-ithms for nonnegative matrix tactori- zation[ J]. Advances in Neural Information Processing Systems, 2001, 13(7) : 556 -562.
  • 9Kim P M, Tidor B. Subsystem identification through dimensionality reduction of large scale gene expression data [ J 1- Genome Re- search, 2003, 13(7): 1706-1710.
  • 10Brnnet J P, Tamayo P, Go|ub T R, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc [ J 1. Natl. Acad. Sci, USA, Mar23,2004, 101(12):4164-4169.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部