摘要
用拟似然方法对p阶基于符号伯努利稀疏算子的整值时间序列模型参数进行估计,得出了参数修正的拟似然估计因子以及该估计因子的极限分布(可以用此极限分布对模型参数进行假设检验等统计分析),并通过数值模拟,将修正的拟似然估计与条件最小二乘估计进行了比较,结果表明,修正的拟似然估计在一定条件下明显优于条件最小二乘估计.
The authors used quasi-likelihood method to estimate the parameter of integer-valued AR (p) process with signed binomial thinning to obtain the modified-quasi-likelihood estimator of the model parame- ters, and the asymptotic distribution of this estimator, thus, we can have some statistical analysis results about the model parameter, such as hypothesis testing. And we compared the modified-quasi-likelihood estimator with the conditional least squares estimator via simulation. The results show that under some conditions, the modified-quasi-likelihood estimator is better than conditional least squares estimator.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第2期219-225,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:J0730101)
高校博士学科点专项科研基金(批准号:20070183023)
吉林大学基本科研业务费资助项目(批准号:200810024)
关键词
整值模型
符号伯努利稀疏算子
条件最小二乘
渐近分布
models of count data
signed Binomial thinning operator
conditional least squares
asymptotic distribution