期刊文献+

INARS(p)模型的拟似然统计推断 被引量:2

Quasi-Likelihood Statistical Inference for the INARS(p) Model
下载PDF
导出
摘要 用拟似然方法对p阶基于符号伯努利稀疏算子的整值时间序列模型参数进行估计,得出了参数修正的拟似然估计因子以及该估计因子的极限分布(可以用此极限分布对模型参数进行假设检验等统计分析),并通过数值模拟,将修正的拟似然估计与条件最小二乘估计进行了比较,结果表明,修正的拟似然估计在一定条件下明显优于条件最小二乘估计. The authors used quasi-likelihood method to estimate the parameter of integer-valued AR (p) process with signed binomial thinning to obtain the modified-quasi-likelihood estimator of the model parame- ters, and the asymptotic distribution of this estimator, thus, we can have some statistical analysis results about the model parameter, such as hypothesis testing. And we compared the modified-quasi-likelihood estimator with the conditional least squares estimator via simulation. The results show that under some conditions, the modified-quasi-likelihood estimator is better than conditional least squares estimator.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第2期219-225,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0730101) 高校博士学科点专项科研基金(批准号:20070183023) 吉林大学基本科研业务费资助项目(批准号:200810024)
关键词 整值模型 符号伯努利稀疏算子 条件最小二乘 渐近分布 models of count data signed Binomial thinning operator conditional least squares asymptotic distribution
  • 相关文献

参考文献9

  • 1Wedderbum R. Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method [ J ]. Biometrika, 1974, 61(3) : 439-447.
  • 2Lu J, CHEN Di, ZHOU Wei-xing. Quasi-Likelihood Estimation for GLM with Random Scales [ J ]. Journal of Statistical Planning and Inference, 2006, 136(2) : 401-429.
  • 3LIN Pei-sheng. Efficiency of Quasi-Likelihood Estimation for Spatially Correlated Binary Data on Lp Spaces [ J ]. Journal of Statistical Planning and Inference, 2008, 138 (6) : 1528-1541.
  • 4Azrak R, Melard G. The Exact Quasi-Likelihood of Time-Dependent ARMA Models [ J 1. Journal of Statistical Planning and Inference, 1998, 68(1) : 31-45.
  • 5ZHENG Hai-tao, Basawa I V, Datta S. Inference for pth-Order Random Coefficient Integer-Valued Autoregressive Processes [J]. Journal of Time Series Analysis, 2006, 27(3): 411-440.
  • 6ZHENG Hai-tao, Basawa I V, Datta S. First-Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Statistical Planning and Inference, 2007, 137( 1 ) : 212-229.
  • 7Kim H Y, Park Y. A Non-Stationary Integer-Valued Autoregressive Model [J]. Statistical Papers, 2008, 49(3): 485 -502.
  • 8Hall P, Heyde C C. Martingale Limit Theory and Its Application [ M]. New York: Academic Press, 1980.
  • 9Klimiko L A, Nelson P I. On Conditional Least Squares Estimation for Stochastic Processes [ J ]. The Annals of Statistics, 1978, 6(3): 629-642.

同被引文献13

  • 1Steutel F, Van Ham K. Discrete analogues of self-decomposability and stability[ J ]. Ann. Probab. 1979 (7) :893-899.
  • 2Ristic M M. A new geometric first-order integer-valued autoregressive (NGINAR( 1 ) ) process[ J]. Journal of Statistical Plan- ning and Inference,2009,139:2218-2226.
  • 3Wedderburn R. Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method[ J ]. Biometrika, 1974, 61 (3) :439-447.
  • 4Lu J, CHEN Di, ZHOU Wei-xing. Quasi-Likelihood Estimation for GLM with Random Scales [ J ]. Journal of Statistical Planning and Inference,2006,136 (2) :401-429.
  • 5Lin Peisheng. Efficiency of Quasi-Likelihood Estimation for Spatially Correlate Binary Data on LpSpaces [J]. Journal of Statisti- cal Planning and Inference ,2008,138 (6) : 1528-1541.
  • 6Zheng Haitao, Basawa I V, Datta S. First Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Sta- tistical Planning and Inference ,2007,137( 1 ) :212-229.
  • 7Zheng Haitao, Basawa I V, Datta S. Inference for Pth-Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Time Series Analysis ,2006,27 ( 3 ) :411-440.
  • 8Billingsley P. Statistical Inference for Markov Processes[ M]. Chicago:University of Chicago Press, 1961:3-6.
  • 9Hall P, Heyde C C. Martingale Limit Theory and Its Application [ M ]. NewYork: Academic Press, 1980.
  • 10Klimiko L A, Nelson P I. On Conditional Least Squares Estimation for Stochastic Processes [ J ]. The Annals of Statistics, 1978, 6(3) :629-642.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部