期刊文献+

凸体的L_p-径向线性组合

L_p-radial Linear Combinations of Convex Bodies
下载PDF
导出
摘要 结合径向线性组合的定义给出了凸体的Lp-径向线性组合的定义,并探讨出了该组合下凸体的对偶混合体积之间的大小关系,重点研究了凸体的Lp-径向线性组合的平均宽度的相关性质,同时还给出了凸体的Lp-径向线性组合和它的极体的平均宽度的下界。在充分研究凸体的Lp-径向线性组合性质的基础上,得到凸体的Lp-径向线性组合和它的Firey线性组合之间的一些关系式。最后,在这些定理的支撑下,得到了关于凸体的Firey线性组合的平均宽度的下界的一般性结论,若K,L∈K0n实数p≥1,λ,μ≥0,λ+μ=1,则M((λK*+pμL*)+(λK+pμL))≥4,等号成立当且仅当K与L都为单位球时。 There are so many researches and papers for radial linear combinations of convex bodies, and many beautiful results of its properties are gotten. Based on these theories, the Lp-radial linear combinations of convex bodies are introduced. In this paper we deduce the size of these dual mixed volumes, and some properties for their mean width are studied. Meanwhile, the lower bound of the mean width of Lp-radial linear combinations of convex bodies and their polar bodies are found. After many properties for Lp-radial linear combinations of convex bodies are studied enough, we have found the connection between the Lp-radial linear combinations and Firey linear combinations of convex bodies. Finally, supported by these theories, we got the lower bound of the mean width of Firey linear combinations of convex bodies which are a more general form: For K,L∈K0^n, real number p≥1,λ,μ≥0,λ+μ=1,then M(λK^*+pμL^*)+(λK+pμL))≥4, with equality if and only if both K and L are unit balls.
作者 章玉琴
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第2期49-51,共3页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10801140)
关键词 凸体 Lp-径向线性组合 平均宽度 convex body Lp- radial linear combination mean width
  • 相关文献

参考文献13

  • 1Firey W J. p-means of convex bodies [J]. Math Scand, 1962,10 : 17-24.
  • 2Firey W J. Some applications of means of convex bodies [ J ]. Pacific J Math, 1964,14:53-60.
  • 3Lutwak E. The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the Minkowski problem [ J ]. J Differential Geom, 1993,38 : 131-150.
  • 4Lutwak E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface areas [J]. Advances in Mathematics, 1996,118:244-294.
  • 5Lutwak E. Dual Mixed Volumes [ J ]. Pacific J Math, 1975, 58:131-150.
  • 6Grinberg E, Zhang G Y. Convolutions, transforms,and convex bodies [ J ]. Proceedings of the London Mathematical Society, 1999,78:77-115.
  • 7赵长健,何斌吾,冷岗松.质心体与射影体的极[J].数学学报(中文版),2006,49(3):679-686. 被引量:1
  • 8Cheung W S, Zhao C J. Width-integrals and affine surface area of convex bodies [J]. Banach J Math Anal, 2008 ( 1 ) : 70-77.
  • 9Wang W, He B W. Lp-dual affine surface area [J]. JMAA, 2008(8) :1-6.
  • 10李小燕,何斌吾.对偶Brunn-Minkowski-Firey定理[J].数学杂志,2005,25(5):545-548. 被引量:6

二级参考文献24

  • 1Schneider. R. Convex Bodies. The Brurm-Minkowski theory[M]. Cambridge Univ. Press, Cambridge, 1993.
  • 2Lutwak E. Dual mixed volume[J]. Pacific J. Math. , 1975,58:531-538.
  • 3Gardner R. J. Geometric tomography[M]. New York:Cambridge Univ. Press,1995.
  • 4Firey W.J. p-means of convexboclies[J]. Math. Scand. , 1962,10: 17-24.
  • 5Lutwak E. The Rrunn-Minkowski-Firey theory I:Mixed volumes and the Minkowski problem[J]. J.Differential Geom, 1993,38 : 131-150.
  • 6Lutwak E. Intersection bodies and daul mixed volumes[J]. Adv. Math. , 1988,71:232-261.
  • 7Busemann H. Convex surfaces[M]. New York: Interscience,1958.
  • 8Ball K.,Volume of sections of cubes and related problems,Israel Seminar (G.A.F.A.) 1988,Lecture Notes in Math.Vol.1376,Berlin,New York:Springer-Verlag,1989:251-260.
  • 9Bourgain J.and Lindenstrauss J.,Projection bodies,Israel Seminar (G.A.F.A) 1986-1987,Lecture Notes in Math.Vol.1317,Berlin,New York:Springer-Verlag,1988:250-270.
  • 10Gardner R.J.,Geometric tomography,Cambridge:Cambridge University Press,1995.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部