期刊文献+

高阶半线性抛物型方程解的整体存在性 被引量:2

Existence of Global Solutions of Higher-Order Semilinear Parabolic Equations
下载PDF
导出
摘要 研究了如下高阶半线性抛物型方程的Cauchy问题{ut+(-Δ)mu=│u│p-1u,(x,t)∈Rn×R1+ u(x,0)=u0(x),x∈Rn的解的整体存在性,其中m是正整数,p>1+2m/n,n≥2。首先将该问题转化为与之等价的积分方程,然后通过引入该问题的一个自相似核构造了一个积分方程,该积分方程的解控制了原问题的等价积分方程的解,最后通过证明构造的积分方程的解有界,从而得到等价积分方程的解有界,因此,当m≥2且初值u0(x)满足u0(x)≤α/(1+x2m/(p-1))时,该问题有整体强解。另外在条件lim|x|→∞ inf│x│2m/(p-1)u0(x)>0下,利用弱解的定义和试验函数的紧支性证明了该问题的弱解的负部相对于正部是不能忽略的。 The existence of global solution to the following Cauchy problem for the higher-order semilinear parabolic equation is studied in this paper: {u(x,0)=u0(x),x∈R^n ut+(-△)^mu=|u|^p-1u,(x,t)∈R^n×R^1 where p 〉 1 + 2m/n and m is a positive integer. First, the problem is transformed into an equivalent integral equation, then another integral equation, whose solution can control the solution of the equivalent integral equation, is constructed by introducing a self-similar kenel function. Finally, the boundedness of the equivalent integral equation can be obtained by proving the boundedness of the integral equation structured. Thus, if m≥2 and uo (x) satisfies |u0(x)|≤a/(1+|x|^2m/(p-1), the solution of the problem is global. Besides, if |x|→∞lim inf|x|^2m/(p-1)u0(x)〉0 holds, then using the definition of the weak solution and the compactness of test function, the negative part of the weak solution can not be ignored with respect to the positive part.
作者 陈爱敏
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第2期52-56,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10771226) 重庆大学"211工程"三期创新人才培养项目(No.S-09110)
关键词 高阶抛物型方程 整体存在 自相似解 试验函数 higher-order parabolic equation existence of global solution self-similar solution test function
  • 相关文献

参考文献10

  • 1Peletier L A,Troy W C. Spacial patterns:higher oeder models in physics and mechanics[ M]. Boston-Berlin :Birkhauser,2001.
  • 2Lee T Y, Ni W M. Global existence large time behavior and life span of solutions of a semilinear parabolic Cauchy problem[J]. Trans Am Math Soc,1992,333:365-378.
  • 3Hayakawa K. On nonexistence of global solutions of some semilinear parabolic differential equations [J]. Proc Japan Acad, 1973,49:503-505.
  • 4Kobayashi K, Sirao T, Tanaka H. On the growing problem for semilinear heat equations[J]. J Math Soc Japan, 1977, 29 : 407-424.
  • 5Wang X. On the Cauchy problem for reaction-diffusion equations[J]. Trans Amer Math Soc, 1993,337:549-590.
  • 6Gazzola F, Grunau H-C. Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay [ J ]. Calculus of Variations and Partial Differential Equations, 2007,30 ( 3 ) : 389- 415.
  • 7Galaktionov V A, Pohozaev S I. Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators [ J ]. Indiana Univ Math J, 2002, 51:1321-1338.
  • 8Zhang Q S. Global existence and local continuity of solutions for semilinear parabolic equations [ J ]. Comm Partial Differential Equations, 1997,22 : 1529-1557.
  • 9Caristi G, Mitidieri E. Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data[J]. J Math Anal Appl,2003 ,279 :710-722.
  • 10Zhao Z. On the existence of positive solutions of nonlinear elliptic equations-a probabiListic potential theory approach [ J ]. Duke Math J, 1993,69 ( 2 ) : 247-258.

同被引文献25

  • 1裴瑞昌,马草川.一类混合边值问题的无穷多解[J].四川师范大学学报(自然科学版),2007,30(4):465-467. 被引量:5
  • 2Lions J L, Magenes E. Non-homogeneous Boundary Value Problems and Applications[M]. Berlin:Springer-Verlag,1972:2-50.
  • 3Li G F. Existence of positive solutions of elliptic mixed boundary value problem[J]. Boundary Value Problems,2012,2012:91.
  • 4Huang Y S, Zhou Y Y. Multiple solutions for a class of nonlinear elliptic problems with a p - Laplacian type operator[ J]. Nonlin- ear Anal,2010,72:3388 - 3395.
  • 5Liu H H, Su N. Well - posedness for a class of mixed problem of wave equations[J]. Nonlinear Anal,2009,71 : 17 -27.
  • 6Ambrosetti A, Rabinowitz P H. Dual variational methods in critical points theory and applications[ J ]. J Funct Anal, 1973,14: 349 - 381.
  • 7Mophou G M,N Guerekate G M.Existence of mild solutions for some semilinear neutral fractional functional evolution equations with infinite delay[J] .Appli Math Comput,2010,216(1):61-69.
  • 8Li Fang,Zhang Jun.Existence of mild solution to fractional integrodifferential equations of neutral type with infinite delay[J] .Adv Diff Equations,2012(1):1-15.
  • 9Hernandez E,Henriquez H R.Existence results for partial neutral functional differential equations with unbounded delay[J] .J Math Anal Appl,1998,221:452-475.
  • 10Hernandez E,Henriquez H R.Existence of periodic solutions of partial neutral functional differential equations with unbounded delay[J] .J Math Anal Appl,1998,221:499-522.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部