摘要
参数曲线曲面和代数曲线曲面是计算机辅助几何设计和几何造型中两种主要研究对象.将参数曲线曲面转化为代数曲线曲面的过程称为精确隐式化.由于精确隐式化过程不一定可以实现,即使可以实现隐式曲线曲面的阶数高计算复杂,并且具有不希望的自交点和奇异分支,从而限制了隐式化的运用,所以寻求参数曲线曲面的近似隐式化问题成为很实际又重要的问题,提出利用二次代数样条曲线来实现一般平面参数曲线近似隐式化的一种算法.该算法得到的逼近曲线二次代数样条曲线既不会产生多余的分支和不希望的奇异点,又达到整体C2连续.实例说明,该算法是有效可行的.
Parametric curves/surfaces and implicit curves/surfaces are two important topics in Computer Aided Geometry Design and Geometric Modeling. The procedure of converting parametric form into implicit form is called exact implicitization. For a general parametric curve/surface, we usually cannot compute its exact implicit form. Even though its exact implicit form can be computed, the curve/surface implicitization involves relatively complicated computation and the degree is higher. Moreover, it may have unexpected components and selfintersections. All these unsatisfied properties limit the applications of the exact implicitization. So finding curve/surface approximate implicitization has become a practical problem. In this paper, we present an algorithm to solve the approximate implicitization of a given parametric curve by using a quadratic algebraic spline curve. The constructed algebraic spline curve not only possesses unwanted components and unexpected singular points but also satisfies C^2 con-tinuity. The proposed algorithm is implemented and numerical results show its efficiency.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2010年第1期13-16,共4页
Journal of Liaoning Normal University:Natural Science Edition
基金
浙江省自然科学基金项目(Y7080068)
浙江省教育厅科研项目(Y200802999
Y200907579)
关键词
参数曲线
二次代数样条
近似隐式化
逼近误差
parametric curves
quadratic algebraic splines
approximate implicitization
approximation error